AD=-AC87 596

UNCLASSIFIED

SR1 INTERNATIONAL MENLO PARK CA
POLYGON REPRESENTATION OF TARGET L
MAY 80 L C GOHEENe J R OLMSTEAD

F/6 17/7
OCATION UNCERTAINTY FOR OCEAN==ETC(V)
N00014=79=C-0329

NL

LE [

o,
>,

e

Technical Report May 1980

POLYGON REPRESENTATION
OF TARGET LOCATION UNCERTAINTY
FOR OCEAN SURVEILLANCE APPLICATION

e T L e

N

By: LOLA C. GOHEEN JEFFREY R. OLMSTEAD

Prepared for:

NAVAL ANALYSIS PROGRAM (Code 431)
OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

ADAOB7Y596

BAT A oo v A kb e i RN

CONTRACT NO00014-79-C-0329
TASK NR 274-310
'=') Reproduction in whole or in part is permitted for any purpose ‘
rs of the United States Government,
<
L3
?
Ll ‘ Approved for public release; distribution unlimited.
!
bl

333 Ravenswood Avenue

Menlo Park, California 94025 U.S.A.
(415) 326-6200

Cable: SRI INTL MNP

TWX: 910-373-1246 80 8 4

Distribution List (Continued)

Name

Number of Copies

Naval Research Laboratory
Washington, DC 20375

Code 2627

Code 5308

Code 7932

Code 7509

Naval Sea Systems Command
Washington, DC 20360
Code 63R-1

6

_—

PRIPoSA. ==t »y

PPN | R N

AT TR

ol

T ST IR, WP % S P R Lo 3

f
]
{

h
T
H
i

Technical Report May 1980

POLYGON REPRESENTATION
OF TARGET LOCATION UNCERTAINTY
FOR OCEAN SURVEILLANCE APPLICATION

By: LOLA C. GOHEEN JEFFREY R. OLMSTEAD

Prepared for:
NAVAL ANALYSIS PROGRAM (Code 431) CONTRACT N00014-79-C-0329
OFFICE OF NAVAL RESEARCH TASK NR 274-310

DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

SR! Project 8385

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

Approved for public release; distribution untimited.

Approved by:

JACQUES NAAR, Director
Center for Defense Analysis

DAVID D, ELLIOTT, Executive Director
Systems Research and Analysis Division

333 Ravenswood Avenue * Menlo Park, California 94025 - US.A,
(415) 326-6200 < Cable: SRI INTL MNP - TWX: 910-373-1246

TR T e TN e WA M ol WA VPN o Y LR

AR 5 i st A i S A 1L

B ——
- —

e e g

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. | 3. NT'S CATALOG NUMBER

4. TITLE (and Subtitle) .| s TvPe OF n'EPon'r & PERIOD COVERED

- : Final Répert €overing-the -,
7 ' OLYGON REPRESENTATION OF JARGET LOCATION /..,..) Moral 979 -vontiarais

UNCERTAINTY FOR OCEAN SURVEILLANCE APPLICATION - ' ;’ $s0-, [e
g g a e

e r—— e 4 ! WMING ORG. REPORT NUMBER
7 RUTRGRW RI Project 8385
A [2-FaNTRACT OR GRANT NUMBER(s)
\Tbla c./Goheen - Jeffrey R./61msteaﬂ} KE7N68014:;§:6:b329 i’
“BRT Tnternational now at ATAC Z;_—Mw_-_.,;
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
gg; ;:ternatignzl 7??%“W~Q§1§ZN
venswoo venue] . 4 AR Ri 145 NR 274_310
Menlo Park, California 94025 < L _Bos)

PQRT DATE 13. NO. OF PAGES
11. CONTROLL'NG OFFICE NAME AND ADDRESS 7/ May 1980 / 170

Naval Analysis Program (Code 431) - ' | A
Off].ce Of %aval Reieatct(x (- 6. SECURITY CLASS. {of this report)

Department of the Navy /ﬂ(

] Arlington, Virginig 22217 UNCLASSIFIED
14 MONITORING AGENCY NAME & ADDRESS (if dm from Controtling Office)

158. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

17. DISTRIBUTION STATEMENT (ot the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if nacessary and identify by block number)

Polygonal uncertainty area Computer graphics

Target uncertainty area Algorithms. to use polygonal

Ocean surveillance uncertainty representation
Target localization and classification Multisource information integration

IU.\NBSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes polygonal location uncertainty representation and
algorithms developed to use this uncertainty representation. The polygonal
representation and algorithms provide a method for encoding and integrating
target location information from many sources. The method has been implemented
in an interactive FORTRAN IV computer program, which is described, Program
output is graphically displayed. There are algorithms to fuse positive or

(continue

DD 1 52:"73‘473 UNCLASSIFIED

EDITION OF 1 NOV 65 1S OBSOLETE SECURITY CLASSIFICAJION OF THIS PAGE (When Data Entersgt /

2P 5814 7

negative location information with a target distribution, calculate the —; ”'“T

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

conditional probability that a location report originated from a particular
target, move target uncertainty areas in time, and allow target uncertainty
areas to move along or around land masses.

r

DD. 21473544

EDITION OF 1 NOV 68 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONTENTS

LIST OF ILLUSTRATIONS . . . &« ¢ & ¢ o o ¢ o o o o &

LIST OF 'I‘ABLES . . L] L) L] . . L] . . . L L] L]

I INTRODUCTION AND SUMMARY . . &« & ¢ & o « o « &

A,

m o O W

Project Objectives . . . ¢« o ¢« ¢ ¢« « & &
Ocean Surveillance Application .,
Algorithms Required . . « + & & &« &« « .

Project Accomplishments . « « o o « & o« &

Future Research o+ ¢« ¢ ¢ ¢ ¢ ¢ o o s o o &

ITI LOCATION UNCERTAINTY REPRESENTATION

A.

Multipolygonal Probability Distributions

1, Mathematical Representation
2, Distributions with Holes

Computer Representation of Targets . . .

Computer Representation of Land Masses .,

III POLYGON ALGORITHMS . o « & « ¢ o o o o o« s o &

Al

C AR

e

Statistics Algorithm ., « « .

1. Polygon Moments . . « ¢« ¢ « o« & o &
2. Triangle Moments . « « « ¢ o o o o o
3. Eigenvalues . . . & &+ & o o & o » &
4, Mean and Covariance Subroutine . . .
5. Error Ellipse Subroutine

Set-OPEration Algorith[n) LI . .

1. Subroutines in the IUCALC Package .
2, Parameters of Subroutine IUCALC . .
3. Interface with IUCALC + « .
4, Examples of Set Operations, .

Fusion Algorithm . . ¢ ¢ & o o ¢ « o o« &

1. Program LOgiC ® o o s o s e o & &
2. Example of Fusion « .+ . .
3. Program Code . + « ¢« o o« o o ¢ o« o« &

vii

ix

NP W e

10
11

12
15

19
19

19
22
25
27
29

31
31
34
38
39

40
44
46

S 2 bt T TN P W5

- A DYy - e

D, Conditional Probability Algorithm ., « « « .+ . 48

1. Program Logic e & e e & e o s 8 & ® o e e & ¢ e 49
2, Example of Conditional Probability 50
3. Program Code . o« o o o « o ¢ o o o o o o o o & o o 51

E. Prediction Algorithm . . ¢ ¢ &+ o ¢ o o o s ¢ o o ¢ o o 53

1. Program Logic . . & o« ¢ o o ¢ s o o o s o s o o« & 53
20 Examples of Prediction e o & & » e & s o s & e & 59
3. Program Code . + o« o« o o ¢ o o o + o o o o o ¢ o » 61
F. Land Interaction Algorithm . + « « ¢ o o « o o s ¢ o . 70
1. Approaches Considered for Land Interaction 71
2. Program LOZLiC ¢ ¢ & o o o o « o o s « s o o o o o 74
3. Examples of Land Interaction . . . + + &« ¢ o & o & 77
4- ProgramCOdE.....-........o.... 77

IV POLYGON RESEARCH COMPUTER PROGRAM . , o « ¢ o o o o ¢ o o & 87

A. General...................-.... 87
B. Interactive Capability . . ¢ o ¢ ¢ o o ¢ o o o o o o« & 87
1. Defining a Pistribution . . 4 ¢ ¢ o ¢ ¢« &+ o ¢ o & 90
2. Drawing an Error Ellipse . . . &« ¢ o o ¢ ¢ o ¢ o & 92

. . . * . . L] . . L) 93
e o o 6 s s e s o s 93
. Moving a Distribution . . . ¢ o ¢ o ¢ o ¢ o o & o 93
. Changing Polygon Weights . . ¢« ¢ ¢« o « ¢« o &+ o o & 93

3. Redrawing a Distribution . . .

4

5

6

7. Fusing Two Distributions . . « « « s o« ¢ +» o« o =« » 94
8

9

10

. Labeling a Distribution . , .

. Conditional Probability . & o ¢ o ¢ ¢ o ¢ o s s o 94

. Array StatusS « o o o« o o o o o o o s o ¢ o o o o 94 ’

. Velocity Space . o o o ¢ ¢ o o o o o o s e o o o 95 ;
11, Changing Time . . . ¢ o ¢ o o o o o o o ¢ s o o o 95 ;
12, Prediction . o o & & ¢ ¢ ¢ o ¢ o o 6 o o o o o o 95

REFERENCES . . o & « ¢ 4 ¢ ¢ o« o o s s o o o o o s o s 2 s o o s o 97

APPENDICES
A PROGRAM POL SOURCE CODE . &« &+ & « « & o o ¢ o o o o o o A-1
B PACKAGE IUCALC SOURCE CODE . « « &« o o ¢ ¢ o o o« o o o B-1

DISTRIBUTION LIST « « 4 « s o o o o 5 o o o v s o o s o s o ¢ o o DL-1

vi

ILLUSTRATIONS

1 Multipolygonal Probability Distribution 10
2 Distributions with Holes . ¢« ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ s o o o o & & 12
3 A Polygon Broken into Triangular Parts . . « ¢« o ¢ o o o . . 21
4 Oblique Coordinates for Area Integration , 23
5 Two-Sigma Error Ellipse .+ o ¢ ¢ o ¢ ¢ o o o o o o o o o o o 30
6 Bivariate Normal Approximation . .« o« ¢ o o o ¢ s o o o ¢ o & 31
7 Structure of the IUCALC Package . + o« « « « o o o« o o o o & 32
8 Polygon Set Operations . . « o « o o o ¢ o o « o o o & o o o 39
9 Intersection Fusion of Two Distributions with

Negative Welghts . o+ o & ¢ o o o s ¢ ¢ o o o o o o o o s o 45
10 Target Likelihood . . & ¢ ¢ o o o o s o o o o s o o o o o« « 49
11 Probability of Detection . . 4 ¢ & « o o« « « ¢« ¢ o o o o o« & 52
12 Graphic Outline of Exact Algorithm ., . . & ¢« ¢ ¢ ¢« ¢ o o & . 56

13 Example of Triangular Position Distribution and
Quadrilateral Velocity Distribution Prediction ., 57

14 Example of Elliptical Position and Velocity
Distribution Prediction . . . « & & o ¢« « o o ¢ o o o« o o+ & 60

15 Erroneous NUCUMUN Result . . « & » o o o o o « « o a s o s » 66
16 Development of Erroneous IUCALC Result &+ ¢« & « & & & 68
17 Erroneous IUCALC Result . . & o & & o o « o o » ¢ o o o s o 69

18 Example of Target Distribution Evolution Around
aLand MasS . o ¢ ¢ o o o o a4 o 4 o 4 4 s s s 4 2 ar e e o 73

19 Example of Target Distribution Evolution Near a i
Choke POoINt . ¢ & 4 & ¢ o o o o o o o s o o o o & o s o ¢ 79

20 Structure of Polygon Research Program . . « « « o« o o s & & 8% ,

21 Defining Distributions . « o« o« o &+ & o+ & s o s & o 2 o o o & 91 !

vii

e

N Oy BN =

TABLES

Land Mass Definition Algorithm « . .
Mean and Covariance Subroutines: MOM and CENTRD
Error Ellipse Subroutine: EIGEN . . . ¢« ¢« « & &
IUCALC Interface Subroutines: OAK and PREIU . .
Fusion Algorithm . . ¢ v ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o &
Conditional Probability Algorithm « « &

Prediction Algorithm . « ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ o « &«

17
28
30
36
47
53
62

I INTRODUCTION AND SUMMARY

This report discusses the use of multiple polygons to represent
probability distributions in two dimensions. Research was performed on
computer algorithms to manipulate multipolygonal distributions so that
they may be useful in an ocean surveillance target localization applica-
tion, The following sections discuss the project objectives, the rele-
vance to the ocean surveillance problem, the algorithms required, the

accomplishments of the project, and future research that is needed.

A. Project Objectives

The project objectives were to demonstrate (1) that a computational
method based on polygons is feasible, and (2) that algorithms can be de-
veloped to graphically display target uncertainty areas for an ocean
surveillance application., We have satisfied these objectives by develop-
ing a research computer program that can perform many functions needed
in an ocean surveillance correlation center. The computational methods
we developed appear feasible for application programs. Many basic algo-

rithms were developed.

B. Ocean Surveillance Application

The research performed is relevant to the general ocean surveillance
problem. The methodology may provide a new tool for target localization
because it will permit an efficient representation that can integrate

reports on target location,

Target location reports arise from a multiplicity of sensors and
can be reports of target contact, no-contact, or other intelligence. In-
formation on target location, including target contact reports arising
from surveillance, appears as a geographic region within which the target

lies at a fixed time with a given probability. This target uncertainty

PP, Y - VA

region usually appears as a bearing sector, a bearing and range sector,
an acoustic convergence zone, an ellipse, or a transit lane region. As
the time of the report recedes into the past, the uncertainty region
moves and deforms. The movement defines the target track, while the de-

formation represents increased positional uncertainty.

Negative information areas appear as geographic regions within
which the target is known not to lie. Negative information can arise
from regions within which it is physically impossible for the target to
be located (such as a land mass when the target is a ship or submarine)

or they can arise from target no-contact reports.

Target uncertainty areas can be represented as accurately as de-
sired by polygons. Moreover, polygons can be represented efficiently on
a digital computer. Thus, polygonal representation of uncertainty areas
offers a versatile method of encoding target location information from
many sources. The method permits the integration of target location in-
formation from multiple sources. Negative information reports can easily

be incorporated, and land masses, choke points, and islands can be repre-

sented.

Two other methods of representing uncertainty are also applicable
to ocean surveillance target localization: the Gaussian and Bayesian
representations. Target localization may be performed by assuming a
bivariate normal (Gaussian) probability distribution. More commonly,
though, it is target tracking (rather than target localization) that
utilizes the Gaussian representation. Target localization may also be
performed with a Bayesian xy-cell representation. This method is not i
common, but it is a powerful approach if the target area is small
enough that the number of xy-cells is manageable in a computer. The
Bayesian method essentially develops a grid of xy-probabilities for each
target by estimating probabilities of receiving a given report assuming
that the target is in an xy-cell. Very complex probability distributions {
can be handled in this way.

The polygon method is compatible with both the Gaussian and the

Bayesian methods. Polygons can be used before the uncertainty area

",
]

becomes small and unimodal; after that, the Gaussian method is more ap-
propriate, Polygons can be used on a global scale where the Bayesian
method is impractical or impossible. In a global situation where the
Bayesian method would take very large amounts of computer time and memory,
the polygon method would only use a modest amount of computer resources.

It is in this sense that the polygon method is 'computationally efficient."
Even though it sounds as though there are areas of overlap and competition
between the Bayesian and polygon methods, there is actually a natural way

to use them together., This hybrid idea is discussed in Section I-E.

In summary, some localization problems are best described by a
Gaussian representation, some by a Bayesian representation, and some by
a polygon representation. Polygons appear more applicable to global
ocean surveillance than to (1) tracking situations where Gaussian methods
are preferred, and (2) small-area localization situations where the
Bayesian method is feasible and may be preferred. In addition to using
the polygon representation by itself, there is an opportunity to create
hybrid representations that may prove useful and cover a wide range of

applications, ocean surveillance or otherwise.

C. Algorithms Required

The kinds of algorithms that are needed for ocean surveillance ap-~
plication arise from the need to handle positive and negative informa-

tion, and to do so over time and under geographic constraints.

Localization is dynamic and, therefore, prediction algorithms are
needed. The target polygons must grow in time (negative information
polygons shrink in time), and this implies the need for a velocity un-

certainty representation.

To perform in a Bayesian-like way, there must be algorithms to cal-
culate the geographic likelihoods of several targets with respect to a
contact report. These conditional probabilities can then be used in a

target classification scheme to associate contact reports with specific

A e T AR e W an L R ket e ClmaA SRR

———

[FRPPNEK SN

oy

o T

4.__._.,;,,‘,“._‘“.4
A RO i .

Ry

targets. The idea of using polygons in a classification methodology is

discussed in Section I-E, along with ideas of hybrid representations.

Algorithms are needed to combine a new report into current target
uncertainty areas. New multipolygonal position and velocity distributions

are thereby created.

Finally, algorithms are needed to allow uncertainty areas to inter-
act with land. Uncertainty areas must deform and split apart to repre-
sent the uncertain behavior of a target as it maneuvers along coastal

areas, through straits, or around islands.

D. Project Accomplishments

A research computer program was developed. It was used to investi-
gate polygonal location-uncertainty representation and to test algorithms

that use this uncertainty representation. The basic idea in representing

location uncertainty is to build up a probability density function of

xy-points by imagining polygons of various heights (polyhedra) being

stacked on top of each other. In this way, a wide variety of density
functions can be synthesized. This "multipolygon' idea was implemented

and used to represent target position uncertainty. ‘

One of the first algorithms developed was a subroutine to calculate
the mean and covariance matrix of a general multipolygonal distribution.
These distribution statistics were then used to display the associated
error ellipse, and were also used as input to other algorithms. The
"statistics algorithm" proved to be quite general in the sense that it

could be used on distributions defined in a variety of ways.

A "set-operation algorithm" was implemented; it accepts two arbi-

trary polygons and returns the polygon (or polygons) of intersection,

union, or negative intersection. We did not develop this algorithm but
*
used a subroutine package developed by Oak Ridge National Laboratory’ H

and adapted it to our CDC 6400 computer. This basic set-operation

*
References are listed at the end of this report.

4

1 algorithm was used by other algorithms to perform data association, pre-
diction, and land interaction functions., Set-opcrations (intersection,
union, and negative intersection) were the basic tools in developing

. polygon algorithms within an ocean surveillance context.

One application of set operations was an algorithm for calculating
the multipolygonal distribution that resulted from an intersection or
negative intersection of two other multipolygonal distributions. This
E "fusion algorithm" can be used to fuse (integrate, meld, filter) positive

or negative location information with a target distribution. Fusion is

carried out by intersections and negative intersections. The union of '

two probability distributions does not seem to have a natural application ;é
in the ocean surveillance context. !
i

An algorithm was developed to calculate the conditional probability d
that a location report originated from a particular target. Both the J
reported location and the target location are represented by multipoly- P

gonal probability distributions. The conditional probability is the

likelihood that a particular target is associated with the report, based

res

only on the location information in the report. Likelihoods based on
other information in the report (received radar characteristics, for
example) are multiplied times the above likelihood to produce a total
target likelihood with respect to all of the information in the report.

Total likelihood for each candidate target is calculated, and the target

with the maximum likelihood would be associated with the report. In

summary, the "conditional probability algorithm' can be used to calculate
target likelihoods with respect to location reports. In terms of ocean
surveillance parlance,® the algorithm is used for "report-to-track' cor-
relation. The algorithm can also be used for the other ocean surveil-
lance functions: report-to-report, track-to-report, and track-to-track b
correlation. Finally, the algorithm can be used to calculate other use-
ful conditional probabilities--for example: (1) the probability of find- 4
ing a target, given a search distribution, or (2) the probability of

killing a target, given a lethality distribution.

i
i
A "prediction algorithm" was developed to move target uncertainty r
areas in time. A multipolygonal target location distribution is assigned t
a multipolygonal velocity distribution. The algorithm calculates a new
and larger location distribution based on the time step and the velocity !
distribution. We believe this is new ground, and that it is a major
accomplishment of the project. From our literature search and contacts,
there appears to be no previous work on moving multiple polygons to repre-

sent target location uncertainty.

Finally, a "land-interaction algorithm" was developed to allow tar-
get distributions to move along or around land masses such as coast lines,
straits, and islands., The algorithm was designed to split the target

distribution into two parts when approaching land. The probability of

the direction the target will go is controlled by the terminal operator.
The land-interaction algorithm makes for a more realistic display than d
simply having the target distribution accumulate against the shore line f
or, worse yet, having it disappear into an island only to reappear on

the other side. The combination of the prediction algorithm and the land-
interaction algorithm is the beginning of a software package that is a
visually appealing and functionally versatile method for handling posi-

tive and negative information about targets of uncertain location.

The research program is written in FORTRAN IV for SRI's CDC 6400

computer. Program output is displayed on the Tektronics 4025 graphics

terminal.

During this research effort, the decision was made to develop and
implement as many algorithms as possible to use the polygonal location
uncertainty representation, since the purpose of the project was to
demonstrate (1) feasibility of the polygon data structure, and (2) feasi-
bility of developing algorithms which use this data structure to graphi-
cally display target uncertainty areas. Thus while the deficiencies of
some implemented algorithms were recognized and documented, effort was 1
directed toward developing more algorithms rather than correcting the

deficiencies of existing algorithms.

E. Future Research

The current research has met the objectives of the project but is
far from being a complete software package that can be used on displays
in an ocean surveillance correlation center. One area of future research
is to continue building on the capability developed so far, improving
current algorithms, and adding new ones. Included in this task would be
target classification representation and report association research.
Another research area is to investigate the usefulness of a hybrid

Bayesian/polygon representation of localization and classification.

The eventual goal of the polygon research is to produce a software
package than can (1) move target polygons around on a map, (2) accept
new reports containing location and classification information, (3) asso-
ciate the information with a target, (4) fuse the localization informa-
tion with the target polygons to improve the location estimate, and
(5) fuse the classification information with the target identity proba=-

bilities to improve the classification estimate.

A more immediate goal would be to expand the current research com-
puter program to include a target identity representation, a classifica-
tion information representation, algorithms to associate reports with
targets, and algorithms to fuse classification information., In addition,
continued work on current algorithms is necessary to ensure their general

applicability.

Another line of research is to use polygons within a Bayesian ap-
proach. The Bayesian method uses detection and classification models to
predict what should be observed, and then actual observations are com-
pared to the prediction, and probabilities of xy-location and target
identity are changed in response to the observation. The method can be
effectively used in a multisensor/multitarget environment so long as the
numbers of xy-locations and target identities do not combine to produce
an impossible computational problem (even for large computers, computa-
tional limits are easily exceeded). The idea, then, is to use polygons

to limit the xy-region in which the Bayesian calculations take place.

The goal of the research would be to develop efficient algorithms that

A I

L L b S e ™~

——d

marry the polygonal representation with the xy-point representation.

Investigation is needed to find speedier ways to do the Bayesian/polygon

P SRR Wir raEie AU

hybrid equivalent of association and fusion. Perhaps a way could be

found to let polygonal algorithms preprocess the information before pass-

ing it on to the Bayesian algorithms, thus saving computation time. If :

successful, the Bayesian/polygon hybrid methodology may free the power-
‘ ful Bayesian method from its major drawback--a massive computational
burden.

P + el ST . — A

FTEIT

ITI LOCATION UNCERTAINTY REPRESENTATION

This section discusses how target location uncertainty and land
masses are represented. Section II-A covers the concepts of multipoly-
gonal probability distributions, Section II-B discusses the array and
indexing scheme we used to represent target distributions in the com-
puter. Section II-C discusses the array and indexing scheme used to
represent land masses. 1t also describes three subroutines utilized in

the definition of distributions and land masses.

A, Multipolygonal Probability Distributions

Figure 1 shows an example of a multipolygonal probability density
function. The multiple polygons on the left are shown as they appeared
on the display, and the figure on the right shows how the resulting proba-
bility surface looks in three dimensions. Notice that the three polygons
were assigned heights of 1, 2, and -1 units. Thus Polygon 2 is shown
twice as high (thick) as Polygon 1. Since Polygon 2 is stacked on top
of Polygon 1, the value of the density function within the boundary of
Polygon 2 is 1 + 2 = 3 units (actually this value is normalized so that
the integral of the density function over all xy-space is unity). Poly-
gons 2 and 3 are inside Polygon 1. Polygon 2 is stacked on top of Poly-
gon 1l because it was given a positive weight. However, Polygon 3 cuts
a hole out of Polygon 1 because it was given a negative weight. The
hole goes all the way through Polygon 1 because Polygon 3 has height -1
unit, which is equal but opposite to the height of Polygon 1.

Summarizing, Figure 1 shows the general concept of multipolygonal
distributions. Polygons are defined by drawing them on the display and
assigning either a height value or a weight value to each one. If height
is given, then weight is calculated by multiplying the given height
times the area of the polygon (weight is equivalent to volume). The

weights may be positive or negative--within the restrictions set forth

Crap—— .

/L ‘

POLYGON HEIGHT WEIGHT

1 1.0 0.75
20 0.39
-1.0 -0.14

FIGURE 1 MULTIPOLYGONAL PROBABILITY DISTRIBUTION

below. Positive weight means that the polygon is stacked on top of other

polygons; negative weight means that the polygon cuts out a hole in the
other polygons.

1. Mathematical Representation

The above visual concept can be made more rigorous by a mathe- i
matical representation. Let Polygon j define the walls of a uniform
probability density function, uj(x,y), such that there is a constant
positive probability density for the xy-coordinates inside Polygon j and
a zero probability density for the xy-coordinates outside Polygon j. The

integral of u (x,y) over all xy-space is unity.

h|
A multipolygonal probability density function, f(x,y) can then

QoR A

be defined by weighting and summing several such uniform density func-

tions:

>y
Lo Srrovvoey

F(x,¥) =Z PiujGny) (1)
[

10

The polygon weights, P, , can be positive or negative, but they are under
some restriction becauie f(x,y) cannot be negative at any xy-coordinate.
This means that (1) polygons with negative weights must lie inside poly-
gons with positive weights, and (2) the sum of positive heights must be

equal to or greater than the sum of negative heights inside those areas

enclosed by negatively weighted polygons. Another restriction on the

Weights iS that they must sum to one:
E P, - 1 . 2
()

This restriction is because the integral of f(x,y) over all xy-space is
unity; therefore, integrating the uniform density functions to unity

leaves the Pj to sum to one.

When all of the weights, Pj’ are non-negative, they may be
interpreted as probabilities (this is the reason for using the symbol
"P"). The multipolygonal probability distribution may then be viewed in

the following manner. Randomly choose, according to the probabilities,

Pj’ a polygon from the set of all polygons in the distribution; then the
target location is uniformly distributed over the chosen polygon. This

view stems from Eq. (1), where the uj(x,y) are really conditional den-

sity functions, conditional on j, providing that the P, are non-negative.
Note that Pj is not, in general, the probability that the target is in-
side Polygon j. The reason is that polygons may lie on top of each other }
and the density adds up, Only if the polygons are separate (disjoint)

may the Pj be interpreted as containment probabilities,

2. Distributions with Holes

Figure 2 shows three ways to make a distribution with a hole
in it. The methods shown on the left and in the middle use two polygons,

while the method on the right uses a single polygon. The first two

methods are essentially the same; in both cases the inside polygon is

assigned a negative weight. 1In the first case, the negative weight is

the result of a negative height multiplied by a positive area. We chose

11

_i
s
i

NEGATIVE COUNTERCLOCKWISE BRANCH CUT
HEIGHT POLYGON
H=1 H=1

FIGURE 2 DISTRIBUTIONS WITH HOLES

to define polygons with vertices listed in a clockwise direction as con-
taining positive areas. In the second case, the negative weight results
from a positive height multiplied by a negative area (counterclockwise

polygon),

The third method uses a single polygon and a "branch cut" to

define the hole. The inside part of the polygon is a hole because of

the counterclockwise sense of the vertices. The branch cut is invisible
to algorithms using the distribution because the cut is traversed twice,]
once in one direction, and once in the opposite direction. When there
is a choice, the branch-cut method is preferred because there are no

negative weights associated with the distribution,

B. Computer Representation of Targets H

The computer program is designed to accommodate several targets;
each target is described by one position distribution and one velocity
distribution for each of several time steps. The position distribution
represents the probability that the target is at various positions with-

in the area at a certain time step. The velocity distribution represents

12

all possible positions of the centroid of the position distribution at L
the next time step. Furthermore, each target distribution (position and
velocity over time) may contain several polygons and each polygon may
consist of many vertices. The memory requirement for this target descrip- E‘
tion was too large to use a combinatorial indexing scheme. For example,
9 targets, 2 spaces (position and velocity space), 5 time steps, 10 poly-
gons per distribution, and 50 xy-points per polygon require 9 . 2 + 5 .
10 « 50 « 2 = 90,000 words of memory. Although not impossible for a
large computer, this massive memory allocation is unnecessary because it
would be largely unused in any particular session at the terminal. In-
stead, we used index-pointers to define where polygons start and stop and

where their vertices start and stop.

The xy-coordinates of polygon vertices are saved in the arrays, X(I) d;
and Y(I), where I = 1, 1400. 1In other words, the program can save the ¥
coordinates of 1400 vertices. The set of I-indices that start with IA(J)

and stop with IB(J) define the vertices of the J-th polygon (J = 1, 200).

The first xy-point and the last xy-point of the J-th polygon are equal

and describe the same vertex:

X(I1)

X(12)

Y(I1) Y(I2)

where Il = IA(J) and I2 = IB(J). This redundance was convenient because
the Tektronix 4025 terminal required the first and last points to be

equal in order to display polygons.

The polygons are numbered from J = 1 to J = 200, and they are as-
signed to target distributions by index-pointers. The set of J-indices
that start with JA(L,M,N) and stop with JB(L,M,N) define the polygons
that belong to the L-th space (L = 1 position, L = 2 velocity), the M-th

time step (M = 1, 5), and the N-th target (N =1, 9).

=

Summarizing the above scheme, the distribution parameters position/
velocity index L, time step index M, and target index N, determine the

set of polygons, {J}, that belong to a particular LMN-distribution:

13 -

J = JA(L,M,N) to JB(L,M,N)
and each polygon J is represented as a set of indices, {I}:
I = IA(J) to IB(J)
and each index, I, is associated with the vertex:
X(1), Y(I)

This target-distribution representation takes (2 + 5 - 9 . 2) + (200 - 2)
+ (1400 - 2) = 3,380 words of memory--far less than the 90,000 words from
before. We have not experienced any operating restriction due to the
200-polygon limit or the 1400-vertex limit. In fact, it is convenient
to have available a large number of vertices per polygon (instead of a
limit of 50, say) because the set-operation algorithm returns polygons

with an unknown number of vertices.

The computer representation of targets consists of two parts: the
X(I) and Y(I) vectors of polygon vertices, as already discussed, and
polygon weights, P(J), which may be positive or negative. These polygon
weights are associated with target distributions in exactly the same
manner as above: the weights, P(J), starting with J = JA(L,M,N) and
stopping with J = JB(L,M,N), are associated with the LMN-distribution,

The sum of P(J) over the start-to-stop set of J-values is unity.

In addition to the arrays needed to describe and save multipolygonal
probability distributions, the program also saves auxiliary arrays that
are useful in polygon algorithms. The height of each polygon, H(J), is
saved. The heights are normalized so that the total volume of the distri-
bution is unity. The centroid of each polygon, (XCEN(J), YCEN(J)), is
saved and used in the prediction algorithm. Statistics of each (L,M,N)-
distribution, SE(I + KL) (for I from 1 to 9, and KL = KE(L,M,N)), are

saved:

14

SE(1l + KL) is the mean of the x coordinates.

SE(2 + KL) is the mean of the y coordinates.

B T S T

SE(3 + KL) is the minor semiaxis of the 20 error ellipse.
SE(4 + KL) is the major semiaxis of the 20 error ellipse.

SE(5 + KL) is sin 6. !

e

SE(* + KL) is cos 8, where © is the clockwise angle from north to

the major axis.

SE(7 + KL) is the variance of the x coordinates,

SE(8 + KL) is the variance of the y coordinates,

e e vt .~ o e et e+
i IR DARRE

SE(9 + KL) is the covariance of the x and y coordinates.

S

KE is an array containing pointers that index SE as a function of

(L,M,N), KE(L,M,N) yields the index in SE that immediately

MYy

precedes the statistics of the distribution (L,M,N).

E;
H
It is convenient to explain four variables that occur frequently in ‘?
the program code, JJ, ILA, JLA, and KILA: i
JJ is the polygon counter for a specific distribution. }
ILA is the counter of the number of vertices stored in the X and
Y arrays. j

JLA is the counter of the number of polygons stored in the X and

Y arrays.

KLA is the counter of the number of statistics stored in the SE

array.

C. Computer Representation of Land Masses 1

The computer program is designed to accommodate several land masses.
Each land mass is described by a polygon, which may consist of many ver-

tices. The xy-coordinates of land mass vertices are stored, respectively,

in arrays LAX and LAY. The scheme used to index into LAX and LAY is the

same as that used for the arrays X and Y. That is, the set of indices
that start with LIA(L) and stop with LIB(L) define the vertices of the
L-th land wass (L = 1, 200), with

LAX(LIA(L)) = LAX(LIB(L))
LAY(LIA(L)) = LAY(LIB(L)) .
Land masses are numbered from 1 up to 200, and LIB(1l,1,1) is the number

of land ma'sses defined for any particular session. Table 1 gives the

land mass definition algorithm.

When land is defined, the variable LAND is set to TRUE and sub-
routine LANDEF is called. Subroutine LANDEF controls the input of land.
Land may be input from a properly prepared file named TAPE9, and/or from
the terminal. Whenever a land mass is defined from the terminal the

rectangle circumscribing it is computed. Thus, for land mass L:

LN(L) is the value of the largest y-coordinate.

LE(L) is the value of the largest x-coordinate.

LS(L) is the value of the smallest y-coordinate.

LW(L) is the value of the smallest x-coordinate,
The terminal operator has the option of saving defined land masses and
circumscribing rectangles on a file named TAPE10.

Certain subroutines are utilized during the definition of target
distributions and land masses. These are GET, PUT, and VEC. Subroutine
GET allows the operator to define target distributions and land from the
terminal. Subroutine PUT stores distributions in arrays X and Y, and

land masses in arrays LAX and LAY. Subroutine VEC draws polygons,

16

.

—_—

I N e

Table 1

RN

LAND MASS DEFINITION ALGORITHM

= LAND 3
LAND=.F. >
WRITE(6,60) y

c ENDFILE 6 2
WRITE(8, 60) (i

60 FORMAT(*DEFINE LAND (Y OR N)x) r
READ(5, 14) @ t)
WRITE(6,14) @ {
WRITE(7,14) @]j
WRITE(8,14) O B
{F(Q.EQ.1HY) LAND=.T. H
1F(.NOT_ LAND) GOTO 100 y
CALL MESSAGC(7HPOL , THLANDEF g
CALL LANDEF (LAX,LAY,LIA,LIB,LJB,LN,LE,LS, LW, XW,YW)]
WRITE(6, 28) dj
WRITE(S8, 28))
WRITE(6, 70) _

c ENDFILE 6 f
WRITE(8, 70) ¢

70 FORMAT (xHOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENTs,
$ » OF INPUT AREA) F10.5%) i
READ(5,75) CLOSE :

75 FORMAT(F10.5)
CLOSE=CLOSE/ 100,
WRITE(6,8%) INC,CLOSE .

c ENDFILE 6 g

WRITE(7,8%5) INC,CLOSE
c ENOFILE 7 ']
WRITE(SB, 85) INC, CLOSE i
85 FORMAT(%INC= x,G11.5,x CLOSE= x,611.5) ;
WRITE(6, 96) COUNT

c ENDFILE 6 {
WRITE(7,96) COUNT t
c ENDFILE 7 i
WRITE(8, 96) COUNT i
96 FORMAT(*THE NUMBER OF 1TERATIONS ALLOWED 1S x, 13, x) :
w

SUBROUTINE LANDEF(LAX,LAY,LIA,LIB,LJB,LN,LE,LS,LW

$ XW,YW) ,
LANOEF AT USER OPTION DEFINES LAND MASSES BY ACCESSING A LAND FILE ON k

UNIT 9 OR BY TERMINAL INPUT

(e NeNeNe]

DIMENSION XW(1),YW(1),LIA(200),L18(200),
DIMENSION X 00),LJACY, 1,1),LIB(1,1,1)
REAL LAX(1400),LAY(1400),LwW(200), LN(200) LE(200)
DATA LIL,LJL/O,0/,Jd,J2/0,0/ LE(200) . LS (2000
DATA 12/0/
CALL MESSAGA(7HLANDEF)
WRITE(6, 7)
WRITE(8. 7)
7 FORMAT(*SLIN 8x)
LJIB(1,1,1)20
FLAGs .F.

17

10

20
100

130
200

30

300

320
323

Table 1 (Concluded)

WRITE(6, 10)

WRITE(8, 10)

ENDFILE 6

FORMAT(x USE LAND FILE? (Y OR N) x)
READ(5,20) O

WRITE(6,20) Q

WRITE(7,20) G

WRITE(8,20) Q

FORMAT(A1)

IF(Q.EQ. 1HY) 100, 200

CONT I NUE

READ(9) LAX,LAY,LIA,LIB,LJA,LJB,LW,LE,LN,LS
FLAG=.T.

Jz=LJB(l,1, 1)

00 130 J=1,J2

11=LIACD)

12=L1B¢J)

CALL VEC(11,12,LAX,LAY)

CONTINUE

CONTINUE

WRITE(6,30)

WRITE(8, 30)

ENDFILE 6

FORMAT(x DEFINE LAND FROM TERMINAL? (Y OR N)x)
READ(S,20) Q

WRITE(6,20) Q

WRITE(7,20) O

WRITE(8,20) O

IF(Q.EQ. 1HY) 300,400

CONTINUE

IF(FLAG) 320, 325

CONT I NUE

JJsJ2

CONT | NUE

IMAX299

JI=JJ+1 :

CALL GET(IMAX,XW, YW, X0,Y0,R1,R2,01,D2)
CALL VEC(1, IMAX,XW,YW)

CALL PUT(1,1,1,JJ, IMAX,XW,YW,LIA,LIB,LJA,LJB,LJ,LAX, LAY,

$ 12,J2)

40

400

50

500

600

. — vk c JanA, .

CALL MESSAGC(7HLANDEF , 7HRECTAN)

CALL RECTAN(1, IMAX,XW, YW,LN(LJ),LE(LJ),LS(LJ),LW(LJ))
CALL MESSAGA(7HLANDEF)

WRITE(6,40)

ENDFILE 6

WRITE(8,40)

FORMAT (*MORE LAND? (Y OR N)x)

READ(S,20) Q

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

1F(Q.EQ. tHY) GOTO 325

CONTINUE

WRITE(6,50)

WRITE(8, S0)

FORMAT(x SAVE LAND ON UNIT 10?7 (Y OR N)x)
READ(S,20) @

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

IF(Q.EQ. VHY) %00, 600

CONTINUE

WRITE(10) LAX,LAY LIA,LIB,LJA,LJB, LW, LE,LN,LS
ENDFILE 10

CONTINUE

CALL MESSAGR(7HLANDEF)

RETURN

END

18

III POLYGON ALGORITHMS
This section describes six polygon algorithms that have been de-
veloped, how they are implemented, and any problems associated with

their implementation.

A. Statistics Algorithm

A "statistics algorithm' was developed to calculate the mean and
covariance and the error ellipse of a multipolygonal probability distri=-
bution. The algorithm can be used on multipolygonal distributions, in-
cluding distributions that have negative weights. The algorithm calcu-
lates the statistics of each individual polygon and then forms a weighted
average over all the polygons in the distribution. The derivation of
the algorithm is presented in Sections III-A-1l, 2, and 3, below, and the

implementation of the algorithm is presented in Sections III-A-4 and 5.

1. Polygon Moments

The algorithm calculates the area and the first and second

moments of an arbitrary polygon. Moments are defined as:

/ f dx dy (3)
P

where f assumes the following five functional values:

E:

g L

f =x, vy, xz, yz, Xy . (4)

The regipn of integration is inside a polygon, P, and the area of P is

A= J/:/;x dy . (5)
P

19

given by

s

e
R il s

.
. * et

ry

Y

- T S —
Ea e, i ISV U ~ R R Y-S

-~
e

A polygon may be thought of as a two-dimensional probability
distribution: points outside the polygon have zero probability density,
and the points inside the polygon have constant probability density equal
to 1/A. Therefore, integrating over the polygon and dividing by the

area is equivalent to integrating over the probability distribution,

The method for calculating the moments is: divide the polygon
into triangles, find the area-weighted moments of each triangle, add
them up, and then divide by the total area. The legitimacy of this ap-
proach is found in Stokes's Theorem, which relates line integrals to

surface integrals. For the two-dimensional case, the theorem may be

f T - &?=/[(‘v‘x?) - K dx dy (6)
c P

—
where the contour, C, encircles the area P; and k is the unit vector in

written:

the z-direction. For example, if F is defined as:

T = (0, x°/3, 0))

/?a$=/ﬁ(2dxdy . (8)
C P

For the purposes of the following discussion, the integral over an area,

then

P, is positive when the contour, C, is counterclockwise, and the integral

is negative if C is clockwise.

Figure 3 shows the polygon, P, broken into triangles, P1 P2 P3 .

The line integral over the contour, C, is equivalent to the sum of line

integrals over the triangular contours, C1 C2 C3 . This equivalence can

be symbolically expressed as:

// +/ / . ©)
C C1 C2 C3

20

Jarm TSN

=

—
e
—_——-

T ——

N4

P

A
I
\
\

P2\

1

¢,

]
/
]
|
]

|
|
|
/
f
| I
I

FIGURE 3 A POLYGON BROKEN INTO TRIANGULAR PARTS

Ihe reason the three integrals add up to the single integral over C is
that the dashed sides of the triangles are traversed twice, once in a
given direction for a triangle and then again in the opposite direction
for the adjacent triangle. Thus, the dashed sides of the triangles do
not contribute to the sum; only the solid sides contribute, and when
added together, they produce the integral over C. By Stokes's Theorem
the sum of line integrals is also a sum of area integrals and can be

symbolically expressed as:

bLLL

21

cad P ecubtilhingliin O AP NP

Notice that the integral over P, is subtracted because the contour, C3,

3
is in a clockwise direction. Thus, the conclusion is that the moments
of a polygon can be calculated by a sum of positive and negative inte-

grals over triangular parts of a polygon.

An alternative method for calculating polygon moments is to
use Stokes's Theorem directly and integrate around the perimeter of the
polygon. This method was not implemented for two reasons. First, the
triangle~-area method results in equations with fewer terms than the
line-integral method; thus, derivation and programming are simplified.
Second, the number of triangles in a polygon is two less than the number
of sides of a polygon; thus the triangle-area method is slightly faster.
Although the line-integral method is~theoretica11y more straightforward,
we chose to derive and implement the triangle-area method for the above

reasons,

2. Triangle Moments

The next task was to derive the first and second moments of
an arbitrary triangle. The general equations for the first moments and
special equations for the x and y moments of inertia of a triangle are
given in Pearson.® We did not readily find a reference on the general

equations for the second moments of a triangle.

The derivation uses an oblique coordinate system as shown in
*
Figure 4, Integration is over the rs-space inside the triangle: first
r is integrated from O to R and then s is integrated from O to C. The

equation for R is found by similarity of triangles:
R = B(1 - s/C) . (1)

The moments are then given by:

In this derivation, a positive-area triangle has its points ordered in
a clockwise direction.,

22

A P

DL By

1
4

— <

(x4, y3l

— x

FIGURE 4 OBLIQUE COORDINATES FOR AREA INTEGRATION

C R

[f sin (y-B) dr ds . (12)
0

i
[
g L

As before,

2 2
f=x,y, X, ¥y, xy (13)

o

where x and y are now functions of r and s.

The area of a triangle, A, is easily calculated {rom the cross

iy —
product of vector C with vector B:

A = (CxBy - Bny)/Z . (14)

Also, by geometry:

23

A = BC sin (y-B)/2 . (15)

- Therefore the moments may be written:

Cc.R

=2

f = Bcff f dr ds . (16)
070

The second moments are most easily calculated by using the identities:

=
- 2 — .
x2 =x + sz
PO 2 —
2 _ - 2
y =y +uby 17
, Xy =xy + Oxhy
where AX = x - ;, and Ay =y - y . {
The transformation equations from rs-space to xy-space are: f
. H
X = X, +r sin B + s sin vy
(18)

y = y1 + r cos B+ 8 cos vy

Using these equations, the second central moments of a triangle in xy-
space can be written in terms of the second central moments in rs-space;

for example:

—_ 2, 2
AXAY = BxBy Ar /B

+ (Bxcy + CxBy) ArAs/BC (19)

2,2
+ Cny as /C

g

where sin 8 = Bx/B, etc.

pora

The second central moments in rs-space are calculated using

identities such as:

ATAS =TS - T §

24

]
§‘
|
i

where the r,s moments are derived by integration; for example:

CcC .R
_— 2
= fé// rs dr ds (20)
0v0
C

Ts %/ (l-s/C)zsds .
0

2]
w
|

The results are:

r = B/3
s =¢/3
r2 = B2/6 (21)
s2 = 02/6
rs = BC/12
The first moments and the second central moments for a triangle
in xy-space are then computed:
_ i
x =x, +(B +C)/3
1 X X
Y=y, + (B +C)/3 7
y =y y y]
sz = (52 -BC + Cz)/18 (22)
X X X X
2 2
=(B -BC +¢C 18
oy (v yCy y)/
= - + 2 +CC 18
AxAy [BxBy (Bxcy chy)/z « y]/

3. Eigenvalues
The "error ellipse" that corresponds to a polygonal probability
distribution can be determined from the distribution's statistics. The
center of the ellipse is at (;,;). If a 2-by-2 covariance matrix, V,

is defined as:

25

v =? 22
11
—2 __2
Vyg =¥ = (23)
Vg =% - xy =V,

then the orientation and principal-axis standard deviations of the el-

lipse are determined by an eigenvalue calculation, as derived below.

The eigenvalue problem can be written as:
Wu=c"1 (24)

. 2, ;
where U is a 2-by-1 vector and ¢° is a scalar. The eigenvalues are de-

rived by noting that the determinant of the equation must be zero:

V- ol I| =0 . (25)

This quadradic equation yields the two eigenvalues:

o] = (P - Q)/2 (26)
2 _ .
o, = (P +Q)/2
where:
P = Vll +V22
F 2 2 /2
- Q= [(v11 - V)Tt 4v12] . 27)

The eigenvector,?? , that corresponds to the larger of the two sigmas,

Oy is found by using one of the linear equations implied by:
(V - 2 DU, =0 (28)
o, 2 .

26

o anr e N it ion i ibielinl b ¢

The equation determines a ratio between the components of"ﬁé, and there-

fore an angle can be calculated:

@ = arc tan [Vlz/(G§ - Vll)] (29)

!
9

where o is the angle from the y axis to the long axis of the ellipse.

e —

4. Mean and Covariance Subroutine

~—yr:

Table 2 shows the subroutines that calculate polygon distribu-

v

tion statistics, The input parameters to subroutine MOM are (1) the

polygon-index limits, J1l and J2; (2) the vectors of vertex-index limits,

IA and IB; (3) the vector of polygon vertices, X and Y; and (4) the
vector of polygon weights, P. The output parameters are (1) the vector F
of polygon heights, H; (2) the means of the distribution, EX and EY; (3) 9
the variances, EXX and EYY, and the covariance, EXY; and (4) the vector !
of polygon centroids, XCEN and YCEN. The input parameters to subroutine ?
CENTRD are (1) the vector~index limits, Il, I2, of the distinct vertices

of a polygon; and (2) the vectors of polygon vertices, X and Y. The out-

put parameters are (l) the area of the polygon, A; (2) values proportional
to the first moments of the polygon, AX and AY; and (3) values proportional
to the second moments of the polygon, AXX, AYY, AXY.

In subroutine CENTRD, the loop is over the triangles constitut~
ing the polygon. The number of triangles, I22, is two less than the
number of polygon vertices. The vectors (BX,BY) and (CX,CY) determine
two sides of the triangle. The formulas for the arca and moments of a
triangle are easily recognized by referring to the previous section.

The triangle moments are weighted by the area of cach triangle (which 4

; may be positive or negative) and then summed over all triangles in the

polygon.

In subroutine MOM, the loop is over the polygons that consti-
tute the distribution. MOM calls CENTRD once for each polygon. When
control returns to MOM from CENTRD, the centroid of the polygon is cal-

culated; the x coordinate of the centroid is stored in XCEN(J), and the !

: 27

I'-nupun-uunuuupuu-uu-n r——— - - — . R,

Table 2

MEAN AND COVARIANCE SUBROUTINES:
MOM AND CENTRD

SUBROUTINE MOM(J1,J2,1A,1B,X,Y,P,H, EX,EY,EXX,EYY, EXY, XCEN, YCEN)
DIMENSION XCENC1),YCEN(1),1A(1),1B(1),X(1),Y(1),P(1),H(1)
EXSEYsEXX3EYYsEXY=O0,
DO S8 J=zJ1,J2
11=1A(J)
12=1B(J) -1
CALL MESSAGC(7HMOM , 7ZHCENTRD)
CALL CENTRD(11,12,X,Y,A,AX, AY, AXX, AYY , ARY)
XCEN(J)=AX/A
YCEN(J)=zAY/A
Z2P(J) /A
EX=EX+2ZxAX
EYzEY+2xAY
EXX=EXX+Z2AXX
EYYSEYY+ZxAYY
EXYEXY+Z5AXY
H{J)=sP(J)/ABS(A)
535 CONTINUE
EXXSEXX-EX*EX
EYY2EYY-EYxEY
EXY=EXY-EXXEY
RETURN
END

SUBROUTINE CENTRD(I1,12,X,Y,A,AX,AY, AXX, K AYY,6 AXY)

CENTRD CALCULATES THE AREA,AND FIRST MOMENTS AND VALUES

PROPORTIONAL TO THE SECOND MOMENTS OF A POLYGON

WHOSE DISTINCT VERTICES ARE STORED IN JUCALC OUTPUT FORMAT R

IN X(1),¥Y(1),1=11,12. y

CENTRD 1S CALLED BY GOLDSEC AND MOM. i;
1

0000000

DIMENSION X(1),Y(1)
CALL MESSAGA(7HCENTRD)
122=12-2
AsAXzAY=AXXzAYY=AXY=0.
DO S0 I=11,122
BX=X(1+1)-X(I
BY=Y(1+1)-Y (1
CX=X(1+2)-X(1
CY=Y(142)-Y(11)
Al=0. .82 (CX*BY-BX=xCY)
A=A+A]
XI=X(11)+(BX+CX) /3,
YisY(11)+(BY+CY) /3.
AXzAX+AT X1
AY=AY+ALlsY]
AXX=AXX+AT 2 (X1 2X]+(BXxBX-BX*CX+CXxCX)/18.)
AYY=AYY+AI 2 (YI2Y | +(BY=BY-BY*CY+CYxCY)/18.)
AXYZAXY+AL* (XI2Y I +(BX2BY-0. 5% (BX*CY+CX%BY) +CX%CY)/18.)
%0 CONTINUE
WRITE(7,20) A,AX,AY, AXX, AYY, AXY
20 FORMAT (2 THE OUTPUT OF CENTRD IS x,/(5615.5))
CALL MESSAGR(7HCENTRD)
RETURN
END

1)
1]
1

gt —

28

y coordinate in YCEN(J). Then each area-weighted sum of triangle moments

is normalized by the area of the polygon, weighted by the P(J) values of

the polygon (which may be positive or negative), and then summed over all

polygons in the distribution. The moments that result from the DO-55

loop do not have to be normalized by the sum of P-weights because the

- P(J) are already defined so that they sum to one, The heights of the
polygons are calculated and saved in this subroutine because it proved a
convenient place to do so, After leaving the DO-55 loop, the second

moments are converted to covariance parameters for output,

5. Error Ellipse Subroutine

Table 3 shows the computer algorithm that performs the cigen-
value calculation. The input parameters are the covariance terms, EXX,

EYY, and EXY. The output parameters are the 2-sigma values, Rl and R2,

which lie along the minor and major axes; and the sine and cosine, D1 r
and D2, of the angle from the y-axis to the major axis of the ellipse.
The first part of the subroutine takes care of two special cases when the f
ellipse is aligned with the coordinate axis; the remainder of the sub- '

routine follows the previous derivation. .

. Figure 5 shows an example of a 2-sigma error ellipse superim-

posed on its multipolygonal probability distribution,

Figure 6 shows how a bivariate normal distribution can be ap-
proximated with three 16-sided elliptically shaped polygons that are
stacked on top of each other. The resulting 2-sigma crror ellipse nearly
coincides with the polygon that represents the 2-sigma ecllipsce of the
bivariate normal distribution. This is a result of the particular weight-

ing scheme used for the three polygons.

When a single elliptically shaped polygon is computed, the 2-

sigma error ellipse almost coincides with the polygon and thus the area

of the polygon and ellipse are nearly equal. Experience has shown that 3

the area of the 2-sigma error ellipse is always larger than the area of
. an arbitrary polygon; therefore, the ellipse-to-polygon area ratio is a
convenient measure of the ellipticity of a polygon. As the polygon ap-

proaches an elliptical shape, the area ratio approaches a valuc of one.

29

. .
hiLA.w.,_.7_ PSRy, St e, e

- — .
RUPRICEEN ¥)

Table 3

F

ERROR ELLIPSE SUBROUTINE: v

EIGEN &

- SUBROUTINE EIGEN(EXX,EYY,EXY,R!1,R2,D1,D2) ‘

IF(EXY.NE.O.) GO TO 70 EY

IF(EXX.GY.EYY) GO TO 60 [
D1=0. $D2=21.

U=EXX SV=EYY $GO TO 80
60 D1=1. $D220.
Us=EYY $SV=EXX $GO TO 80
70 EE=EXYxEXY
PzEXX+EYY
Q=SQRT((EXX-EYY)*x2+4, xEE)
Us(P-Q)/2.
v=(P+Q) /2.
W=V -EXX
O=SQRT(EE+WxW)
D1=EXY/D
D2=W/D
80 R1=0.
IF(U/P.GT.1.E-100) R1=2.xSQRT(U)
R2=2.xSQRT(V)
RETURN

END

WEIGHT:

P(1} = 0.43
P(2) = 0.57

2-SIGMA
ELLIPSE

FIGURE 5 TWO-SIGMA ERROR ELLIPSE

30

|

T T

i RE

2-SIGMA
ELLIPSE

-

"-P"<
e I L e WY

o .

WEIGHT:

PI1) = 0.24 d
P(2) = 0.54 x
P(3) = 0.22 f .

FIGURE 6 BIVARIATE NORMAL APPROXIMATION

B. Set-Operation Algorithm

A card deck of the IUCALC package (a set of FORTRAN subroutines j
that calculate polygon intersections, unions, and negative intersections) I
was obtained from the Computer Sciences Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee. A copy of IUCALC was modified in
order to make the package compatible with the SRI CDC 6400 computer,

1. Subroutines in the IUCALC Package

The IUCALC package consists of eight subroutines and functions
as shown in Figure 7. These are briefly described below. Subroutine %
IUCALC is the main routine of the package. 1Its primary function is to
call Subroutine IUSUBLl and, when IUSUBl terminates normally, to call

Subroutine IUSUB2. The parameters of IUCALC are discussed in a separate

31

ot : P -) s x s 2 e N+ XSV, NT-TIR TIPSR VIR CRROy 12 T, 3

ROUND
tusugi -—E
r SENSE

IUCALC—

L PNTGET

IUSUB2—[: ENSYD2
SEGDEF-E
PNTGET

FIGURE 7 STRUCTURE OF THE IUCALC PACKAGE

section below. Subroutine IUSUBL generates coordinate points, each of
which is the intersection of a side of a polygon with a line segment of
a simply connected chain., (A simply connected chain is a sequence of
distinct directed line segments, €15 €55 eens e, Each e, begins at
coordinate point (xi,yi) and ends at coordinate point (xi

+1’yi+1)’ 1=

i < n. (xi,yi) and (xi) are called the endpoints of e, . Other

+1Y 441
than at an endpoint, a line segment shares no point with another line

segment. The coordinate points (Xl’yl)’ (x2,y2), eeey () are

*n+17Yn+l

distinct with the exception that (xl,yl) = (x) is allowed, in

n+1°Yn+l
which case the chain is called a closed chain (or a polygon); when
(xl,yl) # (xn+1,yn+1) the chain is called an open chain.) IUSUBL calls
the functions SENSE and ROUND., Subroutine IUSUB2 generates the coordi-
nate points of each resulting polygon or chain. TIUSUB2 calls the sub-

routines SEGDEF and PNTGET.

Function SENSE determines whether the vertices of a polygon
are in clockwise or counterclockwise order. Function ROUND rounds

double precision numbers to single precision and is machine-dependent.

32

A CDC 6400 compatible ROUND function was written at SRI and is a part of
the IUCALC package operating on the CDC 6400,

Subroutine SEGDEF generates a matrix that defines the segments
of the resulting polygons or chains. (A segment is a series of success-
ive sides of a polygon or a series of successive line segments of a
chain, all of which must be entirely inside the other polygon, or all of
which must be entirely outside the other polygon, or all of which must
be entirely on the boundary of the other polygon.) SEGDEF calls Subrou-
tine PNTGET and Function ENSYDZ.

Subroutine PNTGET returns a certain coordinate point selected
from among the coordinates of the input polygon and chain and the calcu-
lated points of intersection, Function ENSYD2 determines if a given
point is inside or outside a given polygon, and assumes the point is not

on a boundary of the polygon.

2. Parameters of Subroutine IUCALC

Subroutine IUCALC has 15 parameters. The first six parameters
define the polygon and chain to be operated on. In particular, the

parameters are:

APX The real array containing the x coordinates of polygon A.
APY The real array containing the y coordinates of polygon A.
NOAP The number of coordinate pairs in polygon A,

BCX The real array containing the x coordinates of chain B.
BCY The real array containing the y coordinates of chain B.
NOBC The number of coordinate pairs in chain B.

KALC The integer specifying the desired set operation--
specifically:

KALC =1 Union of polygons A and B
KALC = 2 Intersection of polygons A and B

KALC = 3 Relative difference of polygon A to polygon B
(A intersect not-B)

KALC = 4 Relative difference of polygon B to polygon A
(B intersect not=A)

KALC = 5 Subchains of open chain B on the boundary of
polygon A

33

BRSSO O S R o T il

|
I
|
4
|

KALC = 6 Subchains of open chain B strictly exterior to
polygon A

KALC = 7 Subchains of open chain B strictly interior to
polygon A

KALC = 8 Subchains of open chain B exterior to or on the
boundary of polygon A

KALC = 9 Subchains of open chain B interior to or on the
boundary of polygon A.

The next two parameters define the work area. They are:

WORK The real array used as a work area. The dimension of the
array can be estimated by the formula

NOAP + NOBC + 6K + 2

where K is the number of points of intersection.

WRKMAX The dimension of the work space WORK.

The final six parameters contain the results of the calculations. In

particular, the parameters are:

RCX The real array containing the x coordinates of the
result polygons or chains.

RCY The real array containing the y coordinates of the
result polygons or chains.

NRCMAX The dimension of arrays RCX and RCY.

INORC The integer array that contains the index of the start
of each result polygon or chain in RCX and RCY, and
the number of coordinate pairs in each result polygon
or chain.

INOMAX The maximum allowed number of result polygons or
chains, The dimension of INORC is 2 by INOMAX.

NORC The number of result polygons or chains calculated;

or an error flag when the arrays INORC, or RCX and
RCY are exceeded.

3. Interface with IUCALC

It was convenient to develop two subroutines to communicate

with IUCALC. Subroutine OAK was developed because IUCALC cannot operate

directly on the multipolygonal vectors, X(I) and Y(I). Rather, IUCALC

requires vectors that describe single polygons. Furthermore, IUCALC

34

IO VO S

[
S

requires only the vertices of a polygon, not the first-cquals-last re-
dundancy built into the XY-representation. Subroutine PREIU Qas de-
veloped because the iterative nature of two algorithms made it desirable
to call IUCALC and transfer the IUCALC result to one pair of the input

arrays with a single subroutine call.

The interface subroutine OAK is shown in Table 4. Subroutine

OAK has as input parameters:

KL The integer specifying the desired set operation.
JP The index defining the first input polygon

JQ The index defining the second input polygon

IA The array of vertex-start indices
IB The array of vertex-stop indices

X The x-coordinates of all polygons
Y The y-coordinates of all polygons.

The output parameters of subroutine OAK are:

RX The array of x-coordinates of the resultant polygons
RY The array of y-coordinates of the resultant polygons
IR The integer array that contains the index of the start

of each resultant polygon and the number of vertices
in each resultant polygon

JMAX The number of resultant polygons (including zerov) or an
error flag indicating abnormal termination of processing
by IUCALC.
Subroutine OAK first calculates the number of vertices, NP and
NQ, in the two input polygons. Then pointing indices, IP and IQ, are
computed and used in the DO-loops that copy X and Y values into (PX,PY)
and (QX,QY) arrays for input to IUCALC.

The interface subroutine PREIU is shown in Table 4. Subroutine

PREIU has as input parameters:

Xw The array of x-coordinates of the first input polygon
YW The array of y-coordinates of the first input polygon
Wl The number of distinct vertices in the first polygon

PX The array of x-coordinates of the second input polygon

35

Y CTTUR T T

—
TR

e e T T LT

00000

100

18

30

Table 4

IUCALC INTERFACE SUBROUTINES:
OAK AND PREIU

SUBROUTINE OAK(KL,JP,JQ,1A,I1B,X,Y,RX,RY, IR, JMAX)
DIMENSION PX(50),PY(50),QX(50),QY(50),wWK(300),
s RX(1),RY(1),IR(2,1),X(1),Y(1),1A(1),1B(1)
NP2 1B(JP)-LA(JIP)
NQ=1B(JQ) -1A(JQ)
IP=1A(JP) -1
lQ=1A(JQ) -1
DO 127 1=1,NP
PX(1)=X(1+1P)
127 PY(1)=Y(1+IP)
DO 128 1=1,NQ
AX(1)=X(1+1Q)
128 QY (1)=Y(1+1Q)
CALL 1UCALC(PX,PY,NP,QX,QY,NQ, KL, WK, 300, JMAX, IR, 20, RX, RY, 200)
RETURN
END

SUBROUTINE PREIU(XW, YW, IW1, PX,PY,M1,KL,IS,XS,YS,
$ SUB,FLAG,FLAG!, JMAX)

LOGICAL FLAG, FLAGH

DIMENSION XW(1),YW(1),PX(1),PY(1),XS(1),YS(1),WK(300),
$ [S(2,1)

PREJU CALLS 1UCALC. TESTS JMAX FOR JUCALC AND CALLING ROUTINE ERRORS.

THE IUCALC RESULT IS TRANSFERED TO XW,YW.
IF ERROR THEN AN APPROPRIATE MESSAGE !S WRITTEN.
SUB CONTAINS THE NAME OF CALLING ROUTINE.
CALL MESSAGA(7HPREIU)

FLAG= . T.

FLAGI= T,

WRITE(7,30) (XW(1),YW(1),1=1,1W1)
WRITE(7,30) (PX(1),PY(1),1=%1, M)

CALL MESSAGC(7HPREIU ,7HIUCALC)

CALL JUCALC(XW,YW, IWt!, PX,PY, M1 KL,WK, 300,JMAX, IS, 20,XS,YS, 200)
CALL MESSAGA(7HPREIV)

1F(JMAX) 100, 200, 300

CONTINUE

WRITE(6,15) JMAX,SuB

WRITE(7,15) JMAX,SuB

ENDFILE 7

FORMAT(x1UCALC ERROR =,13,x OCCURS IN x,A7)
WRITE(6, 2%)

WRITE(S,25)

FORMAT (x$SLIN 7%)

L ARERE AR 3

XW(IWI1)=sXW(1)

YWOIWI1)=YW(1)

Mi1=MI4+)

PX(M11)=PX(1)

PY(M11)=PY(1)

FORMAT(5(G13.5,013.5))

CALL VEC(1,IW11, XW, YW)

CALL VEC(1,M11,PX,PY)

FLAG: . F.

CALL MESSAGR(7HPREIU)

RETURN

200 CONTINUE

36

TR owe s - as

ML RN

.- PRI PR RTASRSEC P

Table 4 (Concluded)

[WRITE(6,40) SUB, JMAX
WRITE(7,40) SuB, JMAX
40 FORMAT(A7,sRESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT =,
$ =EXISTS. x,13)
Cc ENDFILE 7
C
c RESULT 1S THE SAME AS ORIGINAL DATA OR NO RESULT EX!STS
[
FLAG1=.F.
CALL MESSAGR(7HPREIUV)
RETURN
300 CONTINUE
[WRITE(6,50) JMAX
WRITE(7,50) JMAX
c ENDFILE 7
50 FORMAT(=PREIU CALLS RECOVER *,13)
CALL RECOVER(JMAX,XS,YS, IS, XW,YW, IW!, SUB)
CALL MESSAGA(7HPREIU)
IF(JMAX.EQ.O0) FLAGI=.F.
CALL MESSAGR(7HPREIU)
RETURN
END
PY The array of y-coordinates of the second input polygon
M1 The number of distinct vertices in the second input polygon
KL The same as KL in OAK
SUB The name of the routine calling PREIU; this is used in error
messages.
Subroutine PREIU has as output parameters:
XW The array of x-coordinates of a selected resultant polygon
YW The array of y-coordinates of a selected resultant polygon
Wl The number of distinct vertices in the selected polygon
XS The same as RX in OAK
YS The same as RY in OAK
IS The same as IR in OAK
FLAGl = FALSE The signal that the result is the same as the
original data or no result exists.
FLAG = FALSE The error flag that IUCALC has abnormally termi-
nated processing.
JMAX The same as JMAX in OAK.
FLAG and FLAGl are set to true upon entry into subroutine
PREIU. Then subroutine IUCALC is called., Upon return from IUCALC, the

37

N g el e oA ey o

T

value of JMAX is evaluated. When JMAX indicates that IUCALC has abnor-
mally terminated processing, FLAG is set to false, error messages are
. written, and PREIU returns. When JMAX indicates that the result is the
same as the original data or no result exists, FLAGl is set to false,
messages are written, and PREIU returns, When JMAX indicates that one
or more resultant polygons have been computed, PREIU calls subroutine
RECOVER, Subroutine RECOVER searches XS, YS, and IS in order to elimi=-

nate spurious vertices generated by IUCALC and select a resultant polygon.

The calling sequence of IUCALC is given below in terms of the
symbols in the previous section as compared to the symbols in subroutines

OAK and PREIU:

Input Output
IUCALC OAK PREIU IUCALC OAK PREIU
APX PX XwW NORC JMAX JMAX
APY PY YW INORC IR IS
NOAP NP Wl INOMAX 20 20
BCX QX PX RCX RX XS
BCY QY PY RCY RY YS
NOBC NQ M1 NRCMAX 200 200
KALC KL KL
WORK WK WK

WRKMAX 300 300

4. Examples of Set Operations

Figure 8 shows examples of set operations. Two polygons, A

and B, were input to IUCALC and three results were computed:

® Intersection of A with B, A * B
®* Union of A and B, A + B

®* Negative intersection of A with B, A * B,

The other negative intersection, B * A, is not shown., Notice that all
of the set operations can produce multiple polygons., IUCALC returns

polygon vertices in a clockwise sense; holes in polygons are returned

38

ke o P RSSO ST - AP

INTERSECTION UNION NEGATIVE
A°*B A+8B INTERSECTION
L N A*B i
/ \ |

¢ y !
s <7 - '-
. GV {
r :
t
|
]

FIGURE 8 POLYGON SET OPERATIONS

as polygons with vertices in a counterclockwise sense., Counterclockwise

polygons are always inside clockwise polygons.

C. Fusion Algorithm

A "fusion algorithm' was developed to fuse (integrate, meld, filter)
two probability distributions into one distribution. Two different kinds
of fusion are possible, and they are multipolygonal counterparts to the
intersection and negative intersection set operations. Thus, a location-
report distribution can be fused with a target distribution by using

intersection fusion; and a negative-information distribution can be fusecd

with a target distribution by using negative-intersection fusion. The
algorithm cannot perform union fusion. Since it is not clear what the

union distribution represents in an ocean surveillance context, we did

not develop the algorithm (although it is possible to do so).

1. Program Logic

Assume that a location report is described by a single polygon,
R, and that the target uncertainty area, to which the report is associ-
ated, is described by a single polygon, T. Since the target is assumed
to be inside both polygons R and T at the same time, the intersection of
the two polygons must be used to define the target uncertainty region
after the fusion of the report. This single-polygon example is derived
mathematically and then the more complicated multipolygonal case is de-

duced.

An appropriate mathematical method for describing fusion is
the Bayesian method. For this method, (1) a likelihood function, g(R/x,y),
is defined; (2) a prior probability function, f(x,y/T), is defined; and
(3) the posterior probability density (the result of fusing the report

and target distributions) is calculated by Bayes's formula:

£(x,y/T') = K g(R/x,y) £(x,y/T) (30)

where K is a normalization constant that makes the integral of the

posterior density over all xy-space equal to unity.

In the single-polygon example, the "likelihood" of point (x,y)
with respect to the report is defined to be a function that is propor-

tional to the uniform density function that is associated with Polygon R:

g(R/x,y) = G u(x,y/R) (31)

where G can be any positive constant--in particular, unity.

The "prior' probability density is the probability density of
locating target, T, at point (x,y) before the report distribution is
fused with the prior distribution. For the single polygon example, the

prior density is just the uniform density associated with Polygon T:
f(x,y/T) = u(x,y/T) . (32)
The integral of the prior density over all xy-space is unity.

40

F— T —— e D v u

When Bayes's formula, Eq. (30), is used with the likelihood
function, Eq. (31), and prior density, Eq. (32), the result is:

£(x,y/T’) =K G u(x,y/R) u(x,y/T) . (33)

The product of the two uniform densities is proportional to a third uni-
form density, u(x,y/T’), because the product density is positive only
for those xy-points with positive density in both u(x,y/R) and u(x,y/T).
In other words, the resulting uniform distribution is defined by the
intersection, T’ = R * T, and thus the posterior distribution is also
defined by this intersection. For the single-polygon example, the
Bayesian method produces the same result as the intuitive method of

intersecting two polygons.

The Bayesian methodology can be extended to handle the fusion
of two multipolygonal distributions. Assume that the report, R, is given

in terms of a multipolygonal likelihood function:

g(R/x,y) = GZ P(R,) u(x,y/R)) (34)
]

where G is a positive constant, Rj represents the j-th polygon in the
distribution, P(Rj) is the weight of the j-th polygon, and u(x,y/Rj) is
a uniform density function defined by the j-th polygon. Assume further
that the prior density for the target, T, is a multipolygonal density

function:

i £Gey/T) =) B(T) ux,y/T,) (35)
| ;
f

k
| of the k«th polygon, and u(x,y/Tk) is a uniform density defined by the

where T, is the k-th polygon in the distribution, P(Tk) is the weight

k-th polygon.

By using Bayes's formula, Eq. (30), with the multipolygonal

representations of the likelihood function, Eq. (34), and prior density,
Eq. (35), the posterior density is written: !
41

e el e i S Ko

EGLY/T') = KG YN B(R) B(T,) ule,y/R)) uwGey/T)) . (36)
j k

The product of two uniform densities is proportional to a

single uniform density:
U(X,}'/Rj) U(X,Y/Tk) = Cjk U(X,Y/Rj*Tk) (37)

where Cjk is a positive constant of proportionality. Cjk is easily de-
rived because at any xy-point with positive density, the value of the

density product on the left must equal C, times the value of the density

jk
on the right; therefore,

Cii = ART) / [IA(Rj)| |acT,) (] (38)

where A(X) is defined as the area of the set of polygons, X.

The area of a set of polygons is the sum of the positive areas
(clockwise polygons) and negative areas {(counterclockwise polygons). Be-
cause of an IUCALC convention, the intersection, Rj * Tk’ produces only
clockwise polygons. A negative intersection also produces clockwise
polygons, but a union produces both clockwise and counterclockwise poly-
gons. The area of the set of polygons resulting from an intersection,

negative intersection, or union is always positive.

The set of pologons that are the result of the intersection,
R, * T,, can be denoted T’ , where n = 1, N, . With this convention,
j k jkn jk
the above uniform density can be synthesized in terms of uniform density

functions that are defined by single polygons:
* = 4
U(x,y/Rj T.) z ijn U(x,y/Tjkn) (39
n

where the weights, ijn’ are defined so that the value of the left side
is constant over all xy-points that have positive density. Under this

42

PO

PR

PR ¥ I

AW

th

o R b it Lce.

condition, the weights must be proportional to the areas of the elemental

polygons:

Q., = A(Tjkn) / ARFT) (40)

jkn
The denominator is just the sum of the areas over n =1, Njk'

Putting the various pieces together, the posterior probability

density function can now be written as:

EGy/T) = SN DRI uGoy /T (41)
] k n

where the weights are given by:

/ =
P(Tjkn) KG P(Rj) P(Tk) Cjk ijn . (42)
Using Eqs. (38) and (40), the equation for the weights can be reduced to

the following:

’ - ’
P(TS,) = K G H(R)) H(T,) AT],) (43)
where the height of polygon X, H(X), can be positive or negative, and is

defined as:

H(X) = P(X) / |a(X)] . (44)

Note that the weights have to be normalized by the constant K such that

they sum to 1 over all jkn-polygons,

For those intersections, Rj * Tk’ that have no resultant poly-

K do not overlap), the jk-elements in Eq. (41) are skipped

over and not recorded., In the computer program, the three~index jkn-list

gons (Rj and T

is transformed to a list based on a single index so that the representa-

tion of f(x,y/T’) is similar to £(x,y/T), Eq. (35). The list of polygons

43

. B - - = . - .
el afc i L a e

e AP

.. S =

'.'llll-n-—-q-!un--u-m-nuyL P——————— — . v
; -

includes only those intersection polygons that are formed by overlapping

Rj and Tk polygons.

In summary, Eq. (41) describes the fusion of two multipolygonal
distributions. The polygons, T;kn’ are formed by using the intersection

operation in IUCALC, and the polygon weights are computed by using Eq.
(43).

The preceding discussion was concerned with the fusion of posi- ﬁ;
tive information, but it could equally well be applied to negative in- I~
formation. The only difference is that negative intersections are used 13
in place of (positive) intersections. For example, if a report, R, con- j 8
sists of negative information (e.g., the target is not in Polygon Rj)’
then the fused polygons are given by: Rj *® Tk’ where Rj means the area
outside Polygon Rj' The intersection produces Polygons T! and the QL

jkn
calculation of the weights proceeds as before. ;

2. Example of Fusion

Figure 9 shows an example in which a multipolygonal report
distribution is fused with a multipolygonal target distribution. Assume
that the report distribution is given by Polygons Rl and R2, and that the
height of R2 equals the negative height of Rl so that the probability ig
density is concentrated in a rectangular annulus, as shown by the shaded |
area, Assume also that the target distribution is given by Polygons Tl
and T2 and that their heights are also equal but opposite. The heights

are given by:

H(Rl) = 1 / [A(Rl) - A(R2)]
H(R2) = -1 / [A(RL) - A(R2)] (45)
H(T1) = 1/ [A(T1) - A(T2)]
H(T2) = -1 / [A(T1) - A(T2)]

where all of the areas, A(X), are positive values. These values for
height are derived by requiring the associated weights to sum to one,

For example, H(R1) A(Rl) + H(R2) A(R2) = 1.

44

TARGET T1

T2 (negative)
|

REPORT R1

R2 (negative)=——arigic

TWO
DISTRIBUTIONS FUSION
RESULT

FIGURE 9 INTERSECTION FUSION OF TWQO DISTRIBUTIONS WITH
NEGATIVE WEIGHTS

Since there are 2 polygons in each input distribution, there

are 4 polygons in the output distribution. These polygons are denoted

A through D in Figure 9 and are the result of the following intersections:

A =Rl *Tl
B =R2 * Tl (46)
C =Rl * T2
D=Re* T2

The weights for Polygons A through D are found by using Eq.

(43):
P(A) = K G H(RL) H(T1) A(A)
P(B) = K G H(R2) H(TL) A(B)
P(C) = K G H(RL) H(T2) A(C) (47)
P(D) = K G H(R2) H(T2) A(D)

Substituting Eq. (45) into Eq. (47), the weights are seen to be propor-

tional to the areas:

45

P(A) = Z A(A)

P(B) = -Z A(B)

P(C) = -Z A(C) (48)
P(D) = Z A(D)

where the positive constant, Z, is the magnitude of the height of each

polygon:
Z=KG / ([ARL) - A(R2)] [A(TL) - A(T2)]) . (49)
Since the weights must sum to one, Z is also given by:
Z =1/ [A(A) - A(B) - A(C) + A(D)] . (50)

These two equations for Z may be used to derive the normalization con=-

stant, K.

Summarizing, Polygons A and D have positive height, Z, and

Polygons C and B have negative height, -Z (negative polygons are shown

by dashed lines on Figure 9). Therefore, by stacking the polygons on

top of each other, the probability density adds and subtracts, and as a

result, it is positive in only the two small squares shown in Figure 9.

This is, of course, the intuitive answer obtained by visually analyzing ;
Figure 9. Other cases can be imagined that are not at all intuitive,

Then the power of the algorithm comes into play.

3. Program Code i

Table 5 shows the section of code in program POL that controls

the calculation of multipolygonal fusion distributions. The operator
chooses one of two fusion options: intersection (KL = 2) or negative
intersection (KL = 4). The operator also inputs the indices (L,M,N) of

the "P" report distribution, and the indices (L,M,N2) of the "Q" target

distribution., The J=-limits (JP1,JP2) and (JQ1,JQ2) define the polygons
in the P and Q distributions.

The DO0-249 loops set up an outer product of P-polygons and
Q-polygons. For a particular pair of polygons, JP and JQ, the IUCALC

46

Table 5

FUSION ALGORITHM ’

1 £ 3

#xFUSION (INTERSECTION, UNION, AND NEGATIVE {NTERSECTION) v
230 KL32 $GO TO 241 A
235 KL=1 $GO TO 241
240 KL34 !
241 JP1sJA(L.M,N) i

JP22JB(L,M,N) |
JQ1=JACL, M, N2)
JO22JB(L,M,N2)
JJ=0
DO 249 JP=JP1,JP2
DO 249 JQ=JA1,JQ2
CALL OAK(KL,JP,JQ, 1A, 1B,X,Y,XW, YW, W, JMAX)
1F (JMAX) 255, 249, 243 :
243 HPQ=H(JP)*H(JQ) d
DO 248 JO=1, JMAX
16=1W(1, JO) ?
IM=1W(2, JO)
DO 246 Ix1,IM
XSC(1)=XW(1+10)
246 YS(1)=YW(1+10) :
M= IM+1 i
XSCIM) zXS (1)
YS(IM) 2YS(1)
CALL VEC(1,1M,XS,YS)
JIzJI+
CALL PUT(L,M,N3,JJ,1M,XS,YS, (A, IB,JA,JB,J.X,Y, LA, JLA) :
248 P(J)=HPQxAREA(XW, YW, IW, JO) ,
249 CONTINUE |
N=N3 ¥
GO TO 185 \
185 J13JACL,M,N)]
J2=2JB(L . M,N)
CALL NORM(J1,J2,P)
186 CALL MOM(J1,J2,1A,1B,X,Y,P,H, EX,EY, EXX, EYY, EXY, XCEN, YCEN)
IF(EXX.GT.0..AND.EYY.GT.0.) GO TD 187
WRITE(6, 25)
c ENDFILE 6 g
WRITE(S, 25) |
25 FORMAT(xNEGATIVE VARIANCEx/) .
GO TO 100
187 CALL EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)
CALL SAVE(L,M,N,EX,EY,R1,R2,01,02,EXX,EYY,EXY,SE, KE, KLA)
INPUT(L,M,N)a.T.
WRITE(6,28) x
WRITE(8, 28) \
c ENDFILE 6 !
WRITE(8,26))
28 FORMAT(x$LIN 1%) ~
: 60 TO 100 3

47

i sy, . s i b imenc s

r—-—-———-——-———'——"“'— r—— > - -

package is called through the interface subroutine, OAK, JMAX is checked

to see how many polygons are returned; if there are no polygons, then a

new pair of input polygons is processed. If therc are resultant polygons,
then the heights of the input polygons, JP and JQ, are found and multi-
plied together. 4

The DO-248 loop is over each one of the new polygons resulting

L4
from the intersection or negative intersection of polygons P and Q. 3

First, the vertex points of the new polygon are read iuato arrays XS and
YS and the redundant vertex points are added. Then, subroutine VEC is
called to draw the new polygon on the display. Subroutine PUT is called ;
to save the polygon in a new distribution with indices (L,M,N3). The new |
polygon is the JJ-th polygon in the distribution., The arrays IA, IB, JA, '
JB, X, Y are updated to reflect the addition. The last action of the d
DO-248 loop is to calculate the (unnormalized) weight of the new polygon,
All polygon pairs are processed and the new distribution is completed

when the DO0-249 loops are finished.

After the new distribution is created, subroutine NORM is

called to normalize the weights so that they sum to one. Subroutines MOM

and EIGEN are called to calculate statistical parameters (see Section III-A)

so that they may be saved by calling subroutine SAVE. 4

%
D. Conditional Probability Algorithm #
. - ool . h e ® o

Before using the fusion algorithm, a decision must be made as to

which target distribution should be fused with the report distribution,

The "conditional probability algorithm" can help make that decision. The
idea is to calculate the likelihood of each target distribution with
respect to the report distribution and then choose the target with the
maximum likelihood. Figure 10 illustrates this idea. The report is as- [
sociated with Target A because its likelihood is higher than that of ﬁ

Target B.

48

g(R/TA) = 0.56

TARGET A

.........

......

.........
.........
. Py

TARGET B

.....

REPORT R

g(R/TB) =027

FIGURE 10 TARGET LIKELIHOOD

1. Program Logic

The conditional probability, g(R/T), is the probability of
event R, given target T. It is computed by finding the average value of
the likelihood function, g(R/x,y), assuming that the target probability
density is given by f(x,y/T). Thus, the conditional probability is an

integral over all xy-space:

g(R/T) = g(R/x,y) £(x,y/T) dx dy . (51)

The multipolygonal representations of g(R/x,y) and {(x,y/T) were pre-
viously given in Eqs. (34) and (35).

The derivation of an expression for g(R/T) can be simplified
by noting from Eq. (30) that the above integrand is just f(x,y/T’)/K.
Then, by using Eq., (41), the xy-integration is simple because it involves

a sum of uniform density functions; the result is:

49

g(R/T) = ZZZ R(T)) /K (52)
j k n

This reduces to the desired expression:
= 9
g(R/T) =G :>: E H(RJ.) H(T,) A(RJ- “T,) (53)
i k

where G is a positive constant, H(Rj) is the height of polygon Rj (as
defined by Eq. (44)), H(Tk) is the height of polygon Tk’ and A(Rj*Tk) is
the total positive area of the polygons resulting from the intersection
of polygons Rj and Tk'
For g(R/T) to be a conditional probability, the constant, G,
must be defined such that g(R/x,y) is between O and 1 inclusive. The
function g(R/x,y) is then the probability of the event R, given that
the target is at point (x,y). For example, if R is the report of a de-
tection event, then g(R/x,y) is the probability of detection, given that
the target is at (x,y). If R is the report of a location measurement
(latitude-longitude, range, bearing, etc.), then g(R/x,y) is the proba-

bility of the measurement occurring, given that the target is at (x,y).

2, Example of Conditional Probability

The example in the previous section (the rectangular annuli,
Figure 9) is continued to demonstrate the calculation of conditional
probability. Equations (45) and (46) are substituted into Eq. (53) and

the result is:

- ACA) - A(B) - A(C) + A(D)
s(R/T) = G TRDy ~ a(R2)] [A(TD) - A(TD)] ° (54)

This is the likelihood of target T, with respect to report R, The result

is more easily interpreted if the constant, G, is set equal to the shaded

report area (see Figure 9):

G = A(R1l) - A(R2) . (55)

50

it ool

The assumption is that if the target is in the shaded report area, then
there is a 100-percent chance that the location measurement occurs. With
G so defined, the likelihood--Eq. (54)--becomes a conditional probability.
It is just the ratio of the area of the two small squares, A(A) - A(B) -
A(C) + A(D), divided by the area of the target annulus, A(Tl) - A(T2).

In other words, the probability of the target being in both the report
and target areas, given that it is in the target area, is the ratio of

the two areas--again, an intuitive result.

Figure 11 shows a second example of a problem in which the con-
ditional probability algorithm would be useful. Instead of a localiza-
tion report likelihood function, a search pattern likelihood function is
defined. 1If the target is inside the small dotted polygon, then there
is a 100-percent probability of detecting the target. If the target is
inside the large dotted polygon but outside the small dotted polygon,
then there is a 50-percent probability of detecting the target. The con-
ditional probability of detection, g(R/T), given a target distribution

(the three ellipses), can then be computed by using Eq. (53).

3. Program Code

Table 6 shows the section of code used to calculate conditional

probabilities., The operator inputs the indices of the P-distribution

(L,M,N) and the Q-distribution (L,M,N2). The conditional probability is
the probability of P, given Q.

The DO-254 loops set up an outer product of P and Q polygons,

JP and JQ. Subroutine OAK returns a set of polygons that are the result

-

of the intersection of polygons JP and JQ. If there are polygons in the
intersection (JMAX positive), then the heights of the input polygons,
JP and JQ, are found. Function AREA is used to calculate the area of
each polygon in the intersection; and the product of the heights and the

area is summed in the DO-252 loop.

—ewragrmo: w2l

Once all of the polygon pairs are intersccted, the resulting
sum, PROB, is divided by the magnitude of the height of the first poly-
gon in the P-distribution; thus, the G-factor [see Eq. (53)] is a

51

PROBABILITY

-__‘.../ OF
..., DETECTION

L]
SEARCH !
PATTERN

TARGET

g(R/T) = 0.62

PROBABILITY OF DETECTION

c s ees e

FIGURE 11

For single-polygon likelihood fungpiqgs, this schgmq

reciprocal height.
is equivalent to assuming a 100-percent probability of receiving the

localization report, conditioned on the target being at an xy-point in-
For multipolygonal likelihood functions, this scheme
£

What is needed is a simple algorithm to find
Then a new G-

side the polygon.
= 1.

is not a very good one.
the maximum height of a likelihood function when G

factor can be defined so that the maximum height is equal to an input
probability, such as 100 percent. The maximum-height algorithm has not

been developed yet.

Table 6 L’

CONDITIONAL PROBABILITY ALGORITHM

& §
sx CONDITIONAL PROBABILITY
250 PROB=0. ,
JP13JA(L,M,N)
JP2=JB(L,M,N)
JQ1sJA(L,M,N2)
JQ22JB(L, M, N2)
DO 254 JPsJP1, JP2 i
DO 254 JG=JO1, JQ2 v
CALL OAK(2,JP,JQ,1A,IB,X,Y, XW, YW, IW, JMAX) ?.
1F(JMAX) 255, 254, 251 |
231 HPQ=H(JP)sH(JQ) |
DO 252 JO=1, JMAX)
252 PROB=PROB+HPQxAREA(XW, YW, IW, JO) y
|

234 CONTINUE
PROB=PROB/ABS(H(JP1))
WRITE(6,34) N,N2,PROB
WRITE(8, 34) N, N2, PROB
34 FORMAT(*PROB OF ,12,x GIVEN »,12,x s*,F5.2)

P
GO TO 100 q.
. 283 WRITE(6,35) JMAX
WRITE(8,33) JMAX r
35 FORMAT(»*1UCALC ERROR x,13)
GO TO 100

E. Prediction Algorithm

A ''prediction algorithm" was developed to move target uncertainty]
areas in time., A multipolygonal target position distribution, (1,M,N), ¥
is assigned a multipolygonal velocity distribution, (2,M,N). The algo-
rithm calculates a predicted position polygon for each polygon in (1,M,N)
based on each polygon in the velocity distribution (2,M,N). Furthermore,

a predicted velocity distribution is calculated,

1. Program Logic

a. Predicted Position Polygons ;

Recall that the velocity distribution, (2,M,N), when de-

fined with respect to a position distribution, (1,M,N), represents all
possible positions of the centroid of the position distribution at the
next time step, M + 1. Consequently, all possible positions at time
step M + 1 of the centroid of any polygon, P, in the position distribu-

1
3
tion are represented by a translation of said velocity distribution. t

53

e el e et e

This translation is determined by adding to all the vertices of each
polygon in (2,M,N) the vector determined by subtracting the centroid of
the position distribution (1,M,N) from the centroid of the position poly-
gon P, That is, if Vi is a polygon in velocity distribution (2,M,N) with
vertices givei by Vij’ and S is the centroid of position distribution
(1,M,N), and p is the centroid of polygon P, then the vertices of the
translated polygon Vi(E) are given by:

vij(-;;) =vy,, +p - S, for all j. (56)

1]
Similarly, if p is any point of positive information in position polygon
P, all possible positions of p at time step M + 1 are represented by
translating the velocity distribution (2,M,N) by the vector determined
by subtracting S from p. The vertices of this translated distribution,

{Vi(p)}, are given by vij(p) =i +p - S, for all i and j.

This argument is sufficient to deduce the predicted posi-
tion polygon defined by a position polygon, P, and a velocity polygon,
V, and is valid for negative as well as positive information polygons.
The predicted position polygon thus derived is always a positive informa-
tion area. In the context of this argument, however, negative information
polygons must be interpreted in terms of positive information., That is,
a negative information polygon has no interior; it consists solely of a
boundary of positive information. Moreover, a negative information area
can exist only when enclosed by a positive information arca. Thus, the
predicted position polygon determined by P and V is the union of the

V(p) over all p in P:

U v(p) .
peP

One can visualize the predicted position polygon as constructed by the
following process. The centroid, ;(3), of the translated velocity poly-
gon V(;) is determined. The position polygon, P, is rigidly translated
to have its centroid at v(p). The predicted position polygon then is
the figure resulting when the velocity polygon is rigidly translated to

54

e

oy SRS BRSNS

TR

have its centroid successively at each point of the translated position

polygon, It is not hard to prove the equivalence of

U V(p) to U _ P(v),
peP veV(p)

where P(v) is the rigid translation of the position polygon that has its
centroid at v. If the vertices of P are given by pj, the vertices of

translated polygon P(v) are given by:

pj(v) =p, tv- p, for all j . (57)

It was conjectured and then proved that the algorithm
described below computes the predicted position polygon, ziven a position “-
A

polygon, P, and a velocity polygon, V.

The Exact Algorithm. The translated velocity polygon V(E) H

is first computed. The vertices of V(;) are given by Eq. (56), and the
centroid of V(E) is given by v(p) = v +p - S, where v is the centroid

of V. Subsequently, the translated position polygons P(Vj(;)) are deter-

mined for all vertices, vj(;), of the velocity polygon. The vertices of
poiygon P(vj(p)) are given E? Eq. (571—-that is, pi(vj(p)) =p; + vj(p)

- p. The centroid of P(vj(p)) is vj(p). A parallelogram is generated
corresponding to each pair of consecutive vertices, P; and Pis1? of posi-
tion polygon P, and each vertex, Vj’ of velocity polygon V(p). Thus,

for each pair of i and j indices, the parallelogram consists of verticces

Pi(vj) and pi+1(vj) of polygon P(vj), and vertices pi+1(v) and

j+l
pi(vj+1) of polygon P(vj+1). Then the union of all the P(vj) and all

the parallelograms is computed iteratively (sce Figure 12).

When the position polygon and velocity polygon represent
positive information areas, the predicted position polygon is all the

area surrounded by the outer boundary of the union, including the outer

boundary. When either the position polygon or the velocity polygon (but
not both) represent negative information, the predicted position polygos

is the union. In this case, a predicted negative information areca nced

55

POSITION POLYGON // \
REPEATED AT EACH PARALLELOGRAM
VERTEX / \\ ELEMENT
\
// \
/ VELOCITY \
/ POLYGON \
-\\. \\
=)
~
~
\\ \
\~\\\\ \
~\.\\ \
-~
S \
~\
FIGURE 12 GRAPHIC OUTLINE OF EXACT ALGORITHM

not exist. When the union has an inner boundary, the area enclosed by
the inner boundary is the negative information=*atca (see Figurec s136). w--t¢
When there is no inner boundary, the negative information area does not
exist. When both position polygon and velocity polygon represent nega-
tive information, it can be proven that the predicted position polygon
generated by them is a subset of the predicted position polygon generated

by the positive information position and velocity polygons that enclose

them.

The exact algorithm is based on complete cnumeration. It
generally requires that (M1+l) ¢« M2 unions be performed, where M1l and M2,
respectively, are the number of distinct vertices in the position and
velocity polygons, Algorithms to compute the predicted position polygon

that are more efficient, though less obvious, than the exact algorithm

56

e @iy

7]

(a) INPUT POSITION DISTRIBUTION (left polygon) AND INPUT VELOCITY
DISTRIBUTION (quadrilaterals). THE INNER QUADRILATERAL OF THE
VELOCITY DISTRIBUTION IS A NEGATIVE INFORMATION AREA

—

s coe /
P Ba—

(b) PREDICTED POSITION DISTRIBUTION (largest polygon--a positive information
area; smallest polygon--a negative information area) AND PREDICTED VELOCITY
DISTRIBUTION (right peir of quadrilaterals)

FIGURE 13 EXAMPLE OF TRIANGULAR POSITION DISTRIBUTION AND
QUADRILATERAL VELOCITY DISTRIBUTION PREDICTION

57

were expected to exist. A much more efficient, but heuristic, algorithm

has been developed (based on study of the exact algorithm) to compute

the predicted position polygon determined by convex positive information
position polygon P and convex or nonconvex positive information velocity
polygon V. It does not appear applicable to negative information polygons.

This algorithm is described in the following paragraphs.

The Quick Algorithm. The algorithm assumes that the

velocity and position polygons have vertices ordered in the clockwise
direction. The translated polygon V(;) is first computed. A vertex

known to be on the boundary of the predicted position polygon is selected.
(Such a vertex is the northernmost vertex of the position polygon when
translated so that its centroid is at the northernmost vertex of the poly-
gon V(E).) Suppose the last vertex selected for the predicted position
polygon corresponds to a vertex--say, with index k--of the position poly-
gon translated to have its centroid at a vertex, Vj’ of polygon V(E).

The equation of thii vertex, pk(vj), is given by Eq. (57), specifically
pk(vj) =P + vj - p. Usually the next vertex of the predicted position
polygon is given by either the vertex with index k + 1 of polygon P(vj),
pk+1(vj), or the vertex with index k of polygon P(vj+1), pk(vj+1). The
oriented area of the triangle defined by the three points pk(vj), pk+1(vj),
and pk(vj+1) is computed. {It is assumed that a triangle with vertices
ordered in a clockwise direction has positive area (refer to III-A).]

When the area of the triangle is strictly positive, the next vertex of

the predicted position polygon is usually pk+l(vj)' When the area is

strictly negative, the next vertex is usuall Vv.,.). When the area
Y Py j

+1
is zero, either vertex will usually do, Vertices continue to be chosen
in the manner described above until the first vertex selected is chosen
again, The algorithm ia this way determines a polygon, U, consisting

of points that usually are vertices of the predicted position polygon.

It has been shown that sometimes some point selected in
this manner is actually in the interior of the predicted position poly-
gon. Although this is an infrequent occurrence, a further procedure of

the algorithm was developed to replace such interior points with the

58

i

'l-.l-llulunnnuunlupl!-n--u. pw——— rye—— ‘ o

proper vertices. This procedure is to replace the polygon U, with the
union of U and all the P(Vj)' Thus, the algorithm yields the final re-
sult:

U U (UP(v,))
] i

for the predicted position polygon. The heuristic result compares very

well to the result computed by the exact algorithm.

The predicted position polygon computed by the above

i methods is stored as a polygon in distribution (1,M+1,N).

b. Predicted Velocity Polygons

The following algorithm provides the logic for the compu-
tation of the predicted velocity distribution (2,M+1,N). The algorithm
determines the time step, Mo, of the most recently input velocity distri-
bution associated with target N. The predicted velocity distribution is
then computed by translating velocity distribution (Z,MO,N) by the vector
derived by subtracting the centroid of distribution (l,MO,N) from the
centroid of (1,M+l1,N). If Vj is a polygon in velocity distribution

1
distributions (1,M0,N) and (1,M+1,N), respectively, then the vertices

(Z,MO,N), with vertices given by Vij’ if S0 and S, are the centroids of

of the predicted velocity polygon determined by Vj are given by

v, (8)=v,, +S -S . (58)
ij 1 ij 1 o

2. Examples of Prediction

Figure 14 illustrates the evolution over one time step of an

elliptical position and velocity distribution, Figure 14(a). The pre-
dicted position distribution is the large elliptical polygon in Figure
1l4(b). The predicted velocity distribution is also elliptical {[the
rightmost polygon in Figure 14(b)7.

Figure 13 shows the evolution over one time step of a triangu- ;

lar position distribution and a velocity distribution composed of nested '

5%

WO, L T

- - - B TV S

i‘ !
ti
’
e
3
i .
b
b
>
¥
L.
!
i;*
A
(a)l INPUT POSITION DISTRIBUTION (left polygon) AND (“
INPUT VELOCITY DISTRIBUTION (right polygon)
|
.
D / |
|
!
: |
| |
(b) PREDICTED POSITION DISTRIBUTION {largest polygon) AND !
PREDICTED VELOCITY DISTRIBUTION ({right polygon) ‘
FIGURE 14 EXAMPLE OF ELLIPTICAL POSITION AND VELOCITY
DISTRIBUTION PREDICTION
H f
60 !
!
I

quadrilaterals, Figure 13(a). The inner quadrilateral is a negative r
S] information area. At time step 2, Figure 13(b), the predicted position
distribution has a positive and a negative information area. The positive -
information area is the pentagon and the negative information area is ' A

the smallest quadrilateral within it. {

3. Program Code

L Table 7 shows the section of code in program POL that controls

the calculation of predicted position and velocity distributions. The

terminal operator inputs M, the time step from which the prediction is

calculated, and N, the distribution number,

The screen is erased, then subroutine DRAW is called so that
the position distribution and velocity distribution that are input to
the prediction algorithm can be redrawn. If land masses have been defined
(that is, when LAND = TRUE), subroutine VEC is called so that the land

masses can be redrawn.

Subroutine MOVMENT is called to calculate the predicted posi=-
tion distribution. Subroutine MOVECEN is called to calculate the pre-
dicted velocity distribution. When an error is detected by subroutines
MOVMENT or MOVECEN or any subroutines called by them, control automati-
cally returns to label 100 of the main program POL.

a. Position Prediction

Subroutine MOVMENT calls subroutines CONCLDE, CUMUN,
NUCUMUN, SELECT, UPDATE, and VEC. 1Its input parameters are: M, N, JA,
JB, X, Y, IA, IB, P, XCEN, YCEN, XW, J, ILA, JLA, SE, KE, KLA, H, LAX,
LAY, LIA, LIB, LAN, LAND, LN, LE, LS, LW, INC, CLOSE. The arrays XW and
YW are work areas, The remaining parameters are as defined in Sections
II-B and II-C., The output parameters are JA, JB, X, Y, IA, IB, P, XCEN,
YCEN, J, ILA, JLA, SE, KE, KLA, and H.

Subroutine MOVMENT first determines the time step, Ml,
for which the predicted position is computed. In fact, Ml = M + 1. The

61

Table 7 '

PREDICTION ALGORITHM .

xx
*xPREDICTION ALGOR!THM
S00 CONTINUE
M1=M+1
WRITE(8,48)
WRITE(6,48)
48 FORMAT(xSERA Gx)
WRITE(8,50)
WRITE(6,50)

5O FORMAT(*SLIN 4x) .
CALL DRAW(1,M,N,1A,1B,JA,JB,X,Y,P) X
CALL DRAW(2,M,N, 1A, 1B,JA,JB,X,Y,P)
IFC.NOT.LAND) GOTO 700
WRITE(6,55)

WRITE(8,55)
55 FORMAT(xSLIN 8%)
LAN=LUB(),1,1)
DO 600 J=1,LAN
H=L1A(S)
12=L1B(J)
CALL VEC(I1,(2,LAX,LAY) iy

600 CONTINUE i

700 CONTINUE .
WRITE(6,28) ¥

c ENDFILE 6 '

WRITE(8, 28)

CALL MESSAGC (7HPOL , ZHMOVMENT)

CALL MOVMENT(M,N,JA,JB.X,Y, 1A, 1B,P,XCEN, YCEN,
$ XW,YW,J,ILA,JLA, FLAG,SE,KE,KLA,H, LAX, LAY, ,LIA,LIB,
$ LAN,LAND,LN,LE,LS,LW, INC,CLOSE)

CALL MESSAGA (7HPOL)

IF(.NOT.FLAG) GOTG 100

CALL MESSAGC (7HPOL , 7HMOVCEN)

CALL MOVECEN(M,N,JA,JB X,Y, 1A, IB,P, SE,KE,KLA,

$ XW,YW,J,ILA, JLA,XCEN, YCEN, H, LAX, LAY, L1A,LIB,

$ LAN,LAND,LN,LE,LS,LW, INPUT,COUNT, FLAG)

CALL MESSAGA (7HPOL)

GOTO 100

-

DO~1000 loop is over cach polygon in the input velocity distribution,

(2,M,N), while the DO-900 loop is over cach polygon in the input position

distribution, (1,M,N). |

For cach exccution of the DU=900 loop, a translation of
the velocity polypon is computed with respect to the position polygon
and stored in arrays XC and YC, redundant vertex points included. The
weights of the velocity and position polygons are evaluated in order to

determine whether positive or nepative information arcas arve represented

e SN

by them. When two positive information areas are indicated, subroutine

02 -

NUCUMUN or subroutine CUMUN is called at operator option, When one nega-
tive information area is indicated, subroutine CUMUN is called. When two
negative information areas are indicated, no further operation in the

D0O-900 loop is executed.

Subroutine NUCUMUN performs the heuristic quick algorithm
(refer to Section III-E-l-a) to calculate the predicted position polygon.
NUCUMUN assumes that the vertices of the input polygons are in clockwise
order. NUCUMUN calls the function NORTH, which calculates the index of
the most north vertex of an input polygon; the function AREA, which cal-
culates the area of an input polygon using the triangle-area method; and

subroutine PREIU. The input paramecters of NUCUMUN are:

NGON1 The polygon number of the position polygon

NGON2 The polygon number of the velocity polygon

IA The array of vertex-start indices

1B The array of vertex-stop indices

X The x-coordinates of all polygons

Y The y-coordinates of all polygons

XCEN The array of x coordinates of polygon centroids

YCEN The array of y coordinates of pulygon centroids

PGX The x coordinates of the translation of the velocity

polygon with respect to NGON1

PGY The y coordinates of the translation of the velocity
polygon with respect to NGON1.

Certain scratch arrays are passed to NUCUMUN for work areas. These are

XW, YW, IW, XS, YS, IS, and WK. The output paramecters of NUCUMUN are:

FLAG = FALSE The signal that NUCUMUN or IUCALC has abnormally
terminated processing

RX The array of x coordinates of the predicted position
polygon

RY The array of y coordinates of the predicted position
polygon

IR1 The number of distinct vertices in the predicted

position polygon

JMAX The number of resultant polygons (including zero)
computed by IUCALC or an error f{lay indicating that
IUCALC has abnormally terminated processing.,

63

N T

T e

- —— e ey a e ~procerom o < Ty
r— cepes i

The arrays PARX and PARY contain the x coordinates and y coordinates,
respectively, of triangles, the signs of whose areas determine the next

vertex., .

Subroutine NUCUMUN first calls function NORTH to compute
the most north vertex in PGX, which is stored in NONGON2, and the most
north vertex in NGON1, which is stored in NONGONl. Using this informa-
tion, the starting vertex on the boundary of the predicted position poly-
gon is then determined and stored in both (RX(1l), RY(1)) and (PARX(1l),
PARY(1)). The formula for this vertex is given by Eq. (57). The DO-29299
loop determines the two candidates for the next vertex on the boundary,
The first candidate (the next vertex of NGONl translated to the vertex
of NGON2 associated with the last vertex selected for the boundary) is
stored in (PARX(2), PARY(2)); the second candidate (the same vertex of
NGON1 translated to the next vertex of NGON2) is stored in (PARX(3),
PARY(3)). The formula for these vertices is given by Eq. (57). The
area of the triangle defined by the arrays PARX and PARY is then evalu-
ated and stored in A, When A is close to zero, the two candidates are
collinear. 1In order that the next vertex be as far from the last one as
possible, the two distances D2 and D3 are computed. D2 is the distance
between the last vertex selected and the first candidate; D3 is the
distance between the last vertex selected and the second candidate. The
first or second candidate is selected, depending, respectively, on
whether D2 or D3 is greater. When A is positive and not close to zero,
the first candidate is selected. When A is negative and not close to
zero, the second candidate is selected. The vertex selected is stored
in the next position of arrays RX and RY. The DO-2999 loop terminates
normally when the starting vertex is selected as the next vertex. In
this case, the DO-5000 loop is executed., This loop successively computes
che union of NGON1 translated to each vertex of NGON2, with the polygon
in arrays RX and RY. This is done by repeated calls to PREIU. If no
error is detected by PREIU, the final result is the boundary of the pre-
dicted position polygon., It is stored in the arrays RX and RY, and then

control returns to MOVMENT. An abnormal termination of the D0-2999 loop

64

g— s’ r &\ - .
- - . D C. - = e R Y UBE b

b A

—

results in an error message with control returning from NUCUMUN to label

100 of the main program POL.

Subroutine NUCUMUN provides a quick method of generating
the predicted position polygon. It is a heuristic method, however. When
this algorithm is applied to nonconvex position polygons, the predicted
position polygon it calculates is not correct in all particulars, Errors
in NUCUMUN calculations result in the generation of polygon-like figures
where sides intersect at interior points. An example of this is shown
in Figure 15. The operator can avoid this situation by using NUCUMUN only
when the input position polygon is convex. When questionablie NUCUMUN
results are generated, the code allows the operator to recalculate the

predicted target distribution using subroutine CUMUN.

To generate the predicted position polygon, subroutine
CUMUN uses a method that has been proved correct. This method, however,
requires many more calculations than NUCUMUN to gencrate the predicted

position polygon.

Subroutine CUMUN performs the exact algorithm (refer to
Section III-E-l-a) to calculate the predicted position polygon. CUMUN
calls the function COLL, which determines whether four vertices computed
by CUMUN (whose x and y coordinates are stored, respectively, in arrays
PARX and PARY) form a parallelogram, and it also calls subroutine PREIU.
The input parameters of CUMUN are exactly the same as the input parameters
of NUCUMUN. The scratch arrays passed to CUMUN for work arcas are XW,
YW, IW, WK, RX, RY, and IR. The output parameters of CUMUN are XS, YS,
IS, FLAG, and JMAX, FLAG and JMAX are the same as in NUCUMUN. For the
remaining output parameters we have:

XS The array of x coordinates of the resulting pre-
dicted positive information arca

YS The array of y coordinates of the resulting predicted
positive information area

1S The integer array that contains the index of the
start of each polygon and the number of vertices
of each polygon in the predicted positive informa-
tion area.

65

T U T

FIGURE 15 ERRONEOUS NUCUMUN RESULT

The DO-1500 loop of subroutine CUMUN is over the number
of distinct vertices in NGON2. When the DO-1500 loop is executed the
J-th time, NGONl is translated so that the translation's centroid is the
J-th vertex of NGON2. The translation is stored in arrays XW and YW,
redundant vertex not included. The formulas for the vertices of this
polygon are given by Eq. (57). The DO-1000 loop is over the number of
distinct vertices in NGONl. When the DO-1000 loop is executed the I-th
time, four vertices are computed. Two vertices are vertices I and I + 1
of NGON1 translated to have its centroid at vertex J of NGON2. Two ver-
tices are vertices I + 1 and I of NGONl translated to have its centroid
at vertex J + 1 of NGON2. The x and y coordinates of these vertices are
stored, respectively, in PARX and PARY. Function COLL determines when
the points in PARX and PARY define a parallelogram, in this case COLL =
FALSE., When PARX and PARY define a parallelogram, the union of the
parallelogram and the polygon currently stored in arrays XW and YW is
computed by a call to subroutine PREIU. After the DO-1000 loop completes
processing, and if the DO-1500 loop is in its first iteration, the con-
tents of arrays XW and YW are transferred, respectively, to arrays RX
and RY. After the DO-1000 loop completes processing and for all itera-
tions of the DO-1500 loop except the first, the union of the polygon
stored in arrays XW and YW and the polygon stored in arrays RX and RY

1s computed by a call to subroutine PREIU. When the DO-1500 loop completes

66

processing, the final result is stored in XS, YS, IS, and control re-

turns to MOVMENT.

During the execution of subroutine CUMUN, problems are
sometimes encountered. The exact algorithm that CUMUN implements re-
quires that frequently the union be computed between two polygons having
two or more vertices in common. Erroneous results have been generated
by the IUCALC subroutines, which are used to compute the unions in this
algorithm. IUCALC may generate polygon-like figures where sides inter-
sect in interior points as exhibited by Figure 16. Or it may generate
figures with coinciding sides as exhibited by Figure 17. Investigation
seems to implicate the routine, ENSYD2, which determines when a point is
inside a polygon. It was discovered that this routine has limited appli-
cation because it must assume that the point is on no ray coincident with
a side of the polygon.® A condition that is necessarily unsatisfied by

the algorithm using it. At this time the problem remains uncorrected,.

When control returns from CUMUN to MOVMENT, MOVMENT calls
subroutine SELECT. Subroutine SELECT, depending on the value of K, ex-
tracts a polygon from arrays XS, YS, and IS and stores it in arrays XPC
and YPC., The input parameters of subroutine SELECT are K, JMAX, XS, YS,
IS.

When K = -1, the polygon represcenting the outer boundary
of the positive information area is sclected; when K = -2, the polygon
representing the inner boundary of the positive information arca is se-
lected, if it exists. The parameters JMAX, XS, YS, IS arc defined as in
CUMUN. The output parameters are K, XPC, YPC, and ICl. The signal thot
the inner boundary of the positive information arca was to be selected,
but that it did not exist, is K = 0, When a polygon is sclected from XS,
YS, and IS, its x and y coordinates are stored, respectively, in arrays
XPC and YPC. The variable ICl contains the number of distinct vertices

in the polygon.

When control returns from subroutine SELECT to MOVMENT,
but no polygon was selected (that is KAY = 0), no further operation in

the DO-900 loop is executed. When control returns from SELECT to MOVMENT

67

37
2 e ! s
ot i E
¥ 8
{a}) POLYGON

{b) POLYGON AND PARRALELOGRAM

3

{c) ERRONEOUS RESULT

FIGURE 16 DEVELOPMENT OF ERRONEOUS IUCALC RESULT

68

FIGURE 17 ERRONEOQUS |UCALC RESULT

and a polygon was selected or when control returns from NUCUMUN to
MOVMENT, MOVMENT calls subroutine CONCLDE. Subroutine CONCLDE calls the
land interaction algorithm and stores the resulting predicted position
polygon, This is discussed in a later section. When control returns to
MOVMENT and no error has been detected, an iteration of the D0-900 and
DO-1000 loops has been completed, When the DO-1000 and DO-900 loops have
completed execution, MOVMENT calls subroutine UPDATE to compute and save
the statistics for the predicted position distribution. Subroutine

UPDATE calls subroutines NORM, MOM, and SAVE.

b. Velocity Prediction

Subroutine MOVECEN calls subroutines NEWCEN, UPDATE, and
VEC; and functions ENSYD2 and MINIMAX. Its input parameters are: M, N,
JA, JB, X, Y, IA, IB, P, SE, KE, KLA, XW, YW, J, ILA, JLA, XCEN, YCEN, H,
LAX, LAY, LIA, LIB, LAN, LAND, LN, LE, LS, LW, INPUT, and COUNT. The
arrays XW and YW are work areas. The remaining parameters are defined
in Sections II-B and II-C. The output paramecters arce JA, JB, X, Y, IA,
IB, P, SE, KE, KLA, J, ILA, JLA, XCEN, YCEN, and H.

Subroutine MOVECEN first determines the time step, M1,
for which the predicted velocity distribution is computed. The DO-200

69

[TV SR

TSR

loop determines the time step, MK, of the most recently input velocity
distribution associated with target N, If this loop is completed with
no error detected, the vector defined by the centroid of the predicted
position distribution (1,M1,N) minus the centroid of the position dis-
tribution (1,MK,N) is evaluated and the resulting x and y coordinates
are stored in variables SEl and SE2, respectively. The D0-4000 loop is
over the polygons in the velocity distribution (2,MK,N). At iteration
J1 of the DO-4000 loop when no land is defined, control passes to label
3100 where velocity polygon Jl is translated by vector (SE1,SE2). Then
subroutine MOVECEN calls VEC to draw the translated polygon on the dis-
play. Subroutine PUT is called to store the translated polygon in a new
distribution with indices (2,M1,N) by updating the arrays IA, IB, JA, JB,
X and Y, and the variables J, ILA, and JLA., The translated polygon is
the J-th polygon in X and Y. The weight of polygon J is set equal to

polygon J1 in the last calculation of the DO-4000 loop. Before returning
to the main program, subroutine MOVECEN calls subroutine UPDATE to com-

pute and save the statistics of the predicted velocity distribution. f%
The behavior of MOVECEN when land is defined is discussed in a later

section.

F. Land Interaction Algorithm -’

A "land interaction algorithm" was wanted that would allow target]
distributions to move along or around land masses such as coastlines,
straits, and islands. The land interaction algorithm was to be used in
conjunction with the already implemented prediction algorithm., The im-
plementation of such an algorithm would provide more realistic display
of target distributions, allow the investigation of assumptions under-
lying the definition of target distributions, and show by example the

capabilities of the polygonal data structure.

Initially, the only requirement of the land interaction algorithm

was that the consequent graphic display, of target distributions inter-

acting with land, should provide reasonable suggestions for the uncertain

behavior of targets as they maneuver around land. There were thus con-

ceivably many satisfactory approaches to development of the algorithm,

70

As an introduction to the algorithm finally implemented, some approaches
to the land interaction algorithm are described. Through an investiga-
tion of these approaches, 'additional requirements were adopted. The ap-
proaches considered are by no means exhaustive. Since the purpose of
the research was to demonstrate the feasibility of the polygonal data
structure concept, rather than to select the most appropriate models of
target motion, the algorithm implemented should not be regarded as opti-
mal. It should be regarded as an example of the types of algorithm made

possible by the use of this data structure.

As seen in the development of the prediction algorithm, in the ab-
sence of land the uncertainty characterized by the position and velocity
distribution at a specified time step completely determines position un-~
certainty at the next time step. A predicted negative information poly-
gon indicates that there exists some positive area outside. That is, it
is possible that the target is on the boundary of the negative informa-
tion polygon. Thus when velocity uncertainty increases, position uncer~
tainty cannot decrease. Consequently, the ocean area included in the
predicted negative information polygon cannot increase; to do so would
indicate a decrease in position uncertainty. The approaches considered,

therefore, treat negative information polygons the same.

1. Approaches Considered for Land Interaction

a. Approaches Considered for Position and Land Interaction

Approach 1. One approach to the interaction of a pre-
dicted position polygon with land masses is to eliminate all portions of
the polygon overlapping land., (It is clear that so long as a portion of
the corresponding velocity polygon is outside of all land masses, some
portion of the predicted position polygon will be outside of all land
masses,) Thus a predicted position polygon that overlapped a land mass
would be recomputed to be that portion of the position polygon outside
of the land. This approach makes no effort to try to account for velo-
city uncertainties introduced by the proximity of land. It seems rea-

sonable to treat positive and negative information position polygons

71

e O i PR T ey & i = menam ik ki T T

alike if this approach is used. Thus, this approach is simple to imple-
ment and comparatively economical of computer time.

Approach 2. Another approach is to treat positive and
negative information position polygons differently. A negative informa-
tion predicted position polygon overlapping land is recomputed to be that
portion of the predicted position outside land. A positive information
predicted position polygon overlapping land would be recomputed to be a
polygon overlapping no land, but close in area to the initial predicted
position polygon, and similar in appearance to those portions of the
initial predicted position polygon outside of land. One way to maintain
similarity of appearance between the initial predicted position polygon
and the recomputed polygon is to compute, for each vertex of the initial
polygon, the equation of the line through the vertex and centroid of the
polygon. Then choose as vertices of the new polygon one point from each
of the lines determined above that is a distance § from the corresponding
vertex. Thus the approach determines an all-ocean polygon close in area
to the initial predicted positive information polygon. This approach
attempts to account for velocity uncertainties introduced by the proxi-
mity of land by increasing the ocean area included in the predicted posi-
tive information polygon, and not increasing the ocean area included in
the predicted negative information polygon. This approach is conceptu-
ally simple. Compared to the first approach described, it is harder to

implement and has more demanding computational requirements,

Approach 3. The third approach considered also treats
positive and negative information areas differently. Negative informa-
tion predicted position polygons are treated just as in the previous ap-
proaches., Positive information predicted position polygons overlapping
land are recomputed to be a polygon overlapping no land and close in
area to the initial predicted position polygon. The requirement of simi-
larity in appearance is relaxed in this approach, however. The idea
would be to use heuristic devices, controlled by the terminal operator,

to determine the form of the recomputed polygon. The operator, in this

72

A e o

Gl b e

approach, would control the final shape of the recomputed polygon. That
is in contrast to the previously described approaches, where the shape
of the recomputed polygon is completely detetminéd” by the initial pre-
dicted position polygon. The heuristics required by this third approach

could be difficult to implement and extreme in computational requirements.

Many other approaches can be conceptualized, but those de-
scribed above are perhaps the simplest to implement. It is interesting
to note that the ability to define and redefine target distributions,
subject only to space available, means that the terminal operator by
undertaking the computational burden (for instance, estimation of the
predicted polygon area) can approximate any of these approaches, and
furthermore that no land interaction software is then required. The
purpose of the land interaction algorithm is to free the terminal opera-

tor from this computational burden.

Approach 2 was selected for implementation because it
attempts to account for velocity uncertainties introduced by proximity

to land, yet is not difficult to conceptualize or implement.

b. Approaches Considered for Velocity and Land Interaction

Approaches similar to those considered for position and
land interaction can be used for velocity and land interaction. Two

other approaches were also considered, Those two are described below,

Approach 4. One approach to the interaction of a pre-
dicted velocity polygon with land masses is to create two copies of any
predicted velocity polygon that overlaps a land mass. These copies are
chosen so that they overlap as little as possible with land masses, but
they are the same distance as the predicted velocity polygon from the

centroid, S of the predicted position distribution to which the pre-

1’
dicted velocity polygon is associated, One copy is placed on each side

of the line joining the centroid of the predicted velocity polygon to Sl.

73

Approach 5. Approach 5 is very similar to the preceding
one. But now the two copies are chosen so that the centroid of each copy
is not within a land mass. This approach is easy to implement and is
not computationally burdensome. Approach 5 was selected for implementa-

tion,

2, Program Logic

a. Program Logic for Position and Land Interaction

Positive Information. An algorithm was needed to recom-

pute the predicted position polygon when the predicted positive informa-
tion position polygon generated by the prediction algorithm intersects a
land mass. The recomputed polygon needed to possess the properties of
intersecting no land mass and being similar in appearance and close in
area to the predicted position polygon provided by the prediction algo-
rithm, Two iterative methods of recomputing predicted position polygons
were developed. These methods differ only in the final step. They are
discussed below. The methods determine a scale factor, o, based on the

method of Golden Section.®

Then the methods compute a polygon, Q, with
vertices qi, from o and the vertices pi and centroid E of the predicted
position polygon provided by the prediction algorithm. The equations of
the vertices of Q are:
= + - D

q; =op, + (L - o)p . (59)
At the next step, both methods compute a set of remainder polygons from
Q and the land masses, The remainder polygons are the parts of Q that

are outside all the land masses.

Method 1 of recomputing the predicted position polygons
computes the total area contained in the set of remainder polygons. When
the operator considers this area close enough to the area of the predicted
position polygon provided by the prediction algorithm, Method 1 selects
that set of remainder polygons as the recomputed predicted position poly-
zons, Otherwise, another scale factor is selected according to the

method of Golden Section, and the iterations continue, Method 2 of

74

TN ud

gonerating the recowmputed predicted position polygon computes the arca
of the largest polygon in the set of remainder polygons. When the dis-
play operator considers this area close enough to the area of the pre-

dicted position polygon provided by the prediction algorithm, the method

selects the largest remainder polygon as the recomputed predicted posi-
tion polygon. Otherwise, another scale factor is selected according to

the method of Golden Section and the iterations continue.

Method 1 has the feature that multiple recomputed predicted
position polygons are frequently generated from one predicted position
polygon. Furthermore, these multiple polygons cwn be widely separated i®
from each other--for example, on opposite sides of a land mass. Thus,
the multiple polygons that result in certain cases are difficult to ﬁ
interpret, and this proliferation of polygons creates an unnecessary

burden on the software. 13

Method 2 avoids this feature because only one recomputed

&

predicted position polygon is generated. Method 2 was the method adopted.

Negative Information. An algorithm was needed to recom-

pute the predicted position polygon when the predicted negative informa-
tion position polygon generated by the prediction algorithm intersccts

a land mass. The recomputed polygon generated by the method was to be
that portion of the predicted position polygon outside land. The method

developed in the previous section is used to recompute the polygon by

setting o = 1.

b. Program Logic for Velocity and Land Interaction

A method was developed for recomputing predicted velocity
polygons. The method checks each predicted velocity polygon to determine
if its centroid is contained in any land mass. When a centroid is in a
land mass, one copy of the predicted velocity polygon is placed on cach o

side of the line joining the centroid of the predicted velocity polygon

to the centroid of the predicted position distribution with which it is

associated, such that the centroid of cach copy of not contained in any

land mass.

75

" -y . N
ebibionib, i e R A L

I W S A

S Y ‘ P

Each copy has associated with it a proportion of the
weight assigned the predicted velocity polygon generated by the predic-

tion algorithm. The proportion is specified by the operator.

An iterative algorithm is employed to first compute a
centroid of each copy outside all land masses. This algorithm is de-
scribed below. Consider the circle with center at the centroid, Sl’ of
the predicted position distribution and radius given by the distance be-
tween S1 and the centroid of the predicted velocity polygon. When the
centroid of the predicted velocity polygon, (xo,yo), is in a land mass,
the algorithm computes the point on the circle 10 degrees clockwise of
(xo,yo). This point is checked to determine if it is contained in the
same land mass as (xo,yo). If it is, the algorithm computes the point
on the circle 20 degrees clockwise of (xo,yo) and this point is checked.
The algorithm continues to compute points clockwise from (xo,yo) and 10
degrees apart until a point, (xl,yl), is calculated that is not in the
same land mass as (xo,yo). Then, (xl,yl) is checked to determine if it
is contained in any other land mass. When it is not, (xl,yl) is the

centroid of the clockwise copy of the predicted velocity polygon.

When (Xl’yl) is contained in another land mass, the point,
(x,y), computed by the algorithm immediately preceding (xl,yl) is in the
same land mass as (xo,yo); therefore the algorithm computes §, the angle
separating (x,y) and (xl,yl) divided by 10 and computes the point,
(x2,y2), on the circle § degrees clockwise of (x,y). The algorithm
checks (x2,y2) for containment in the same land mass as (xo,yo), and so
long as that is true the algorithm continues to compute points clockwise
from (x,y) and § degrees apart until a point is calculated that is not
in the same land mass as (xo,yo). This point is then treated as (Xl’yl)

(see above) and the iterations continue.

The centrojid of the counterclockwise copy of the predicted

velocity polygon is computed in a similar way.

76

it eciodbilbniniin . S PSS RERRR RS0

3. Examples of Land Interaction

Figure 18 illustrates the evolution of a target distribution
over three time steps around a land mass. The position polygon at
Step 1 is the solid triangle, while velocity is given by the dotted tri-
angle. At Step 2 the position uncertainty area has evolved to the hexa-
gon. The velocity distribution has evolved to two triangles in response
to its proximity to the land mass. At Step 3, the two polygons in the
velocity distribution at Step 2 cause two position uncertainty areas to

evolve around the land mass.

Figure 19 illustrates the evolution of another target distribu-
tion near a choke point. At Step 1, the nested quadrilaterals are the
position distribution, consisting of positive and negative information
areas. The nested triangles are the velocity distribution, consisting
of positive and negative information areas. At Step 2, the position
distribution has evolved to the solid polygons. It still has a negative
information area, The velocity distribution has evolved to four tri-

angles,

4. Program Code

a. Position and Land Interaction

Subroutine CONCLDE calls the land interaction algorithm
and stores the recomputed predicted position polygon in distribution
(1,M1,N). The predicted position polygon computed by the prediction
algorithm has ICl distinct vertices; its x and y coordinates are stored
respectively in arrays XPC and YPC. Subroutine CONCLDE first checks the
value of LAND. Only when land masses are defined is LAND = TRUE.

When no land is defined, control passes to label 900,
where the redundant vertex is added to the predicted position polygon.
Subroutine VEC is called to draw the polygon on the display. Subroutine
PUT is called to store the polygon as polygon JJ in distribution (1,M1,N)
by updating the arrays IA, IB, JA, JB, X, and Y, and the variables J,
ILA, and JLA., This polygon then is the J-th polygon storced in X and Y.
The weight of this polygon is set equal to the product of the weipht of

77

(s) TIME STEP 1

A

’

4

’

Z§‘l LAND
MASS

s e

/./ (N /
/ -)

(.-._/'/ \'l

(b) TIME STEP 2

{c} TIME STEP 3

FIGURE 18 EXAMPLE OF TARGET DISTRIBUTION EVOLUTION

AROUND A LAND MASS

78

. - RO Y WY STIE: SO o PP
T .- -

-l

i

——

. __‘H-
IV -SSR AY

ST e T R o

»
L]
L4 +
L]
,
LAND MASS 1 \
| .
] -/
‘ _—
e venernenananareneen Ta
‘ - -)
A})
'
\ LAND MASS 2 \
A Y
{a) TIME STEP 1
Phe . H
. 2% cme———— ; ~ b !
[:

LAND MASS 1

v
1
'
)
]
' \
.
)
‘ Y
.
’

(b) TIME STEP 2

FIGURE 19 EXAMPLE OF TARGET DISTRIBUTION EVOLUTION NEAR A
CHOKE POINT

Y —

79

3 the generating position polygon and the weight of the generating velocity

polygon, P(J) = PP x PC. Then control returns to subroutine MOVMENT.

When land is defined, subroutine CONCLDE calls subroutine
POSINT to determine whether the predicted position polygon intersects
any land mass. POSINT calls subroutine RECTAN to compute the rectangle

circumscribing the predicted position polygon. The input parameters of

RECTAN are:
Il The index of the first vertex of the polygon
I2 The index of the last distinct vertex of the polygon
X The array in which the x coordinates of the polygon
are stored
Y The array in which the y coordinates of the polygon

are stored.

The output parameters of RECTAN are:

The value of the largest x coordinate of the polygon

The value of the largest y coordinate of the polygon tf
{

The value of the smallest y coordinate of the polygon i
|

= o @m =z

The value of the smallest x coordinate of the polygon.

Thus N,E,S, and W determine a circumscribing rectangle with vertices
(N,E), (S,E), (S,W), and (N,W).

Next, subroutine POSINT initializes the variables, FLAGIL
and LANINT so that they are TRUE.

The DO-1000 loop is over the number, LAN, of defined land
masses. At the J-th iteration of the DO-1000 loop, the rectangle circum-
scribing the predicted position is tested for overlap with the rectangle
circumscribing land mass J. This is accomplished by evaluating function

MINIMAX, MINIMAX = TRUE only when there is no overlap between the

rectangle circumscribing polygon A and the rectangle circumscribing

polygon B, The input parameters to MINIMAX are:

The value of the largest y coordinate in polygon A

- ——

The value of the largest x coordinate in polygon A P

The valuc of the smallest y coordinate in polygon A

80

W The value of the smallest x coordinate in polygon A
LN The value of the largest y coordinate in polygon B
LE The value of the largest x coordinate in polygon B
LS The value of the smallest y coordinate in polygon B
LW The value of the smallest x coordinate in polygon B.

When MINIMAX = TRUE, the predicted position polygon does not intersect
land mass J, and no further operation in the DO-1000 loop is executed.
When MINIMAX = FALSE, an intersection with land mass J is possible;
thus, the next operation of the DO-1000 loop is to test the predicted
position polygon for a nonempty intersection with land mass J. In order
to make the test, the DO-100 loop copies the distinct vertices of land
mass J from arrays LAX and LAY into XW and YW, respectively, so that
TUCALC may be called. The intersection is computed by a call to IUCALC.
When control returns to POSINT, JMAX is evaluated. JMAX = 0 indicates

that the intersection is empty, whence no further operation in the

DO-1000 loop is executed.

JMAX > 0 indicates that the intersection is nonempty. In i?
this event the weights of the generating position and velocity polygon
are checked to determine if the predicted position polygon is a positive
or negative information area. In the case of a negative information 3
polygon, subroutine REMAIN is called. In the case of a positive informa-

tion polygon subroutine GOLDSEC is called.

Given a polygon, Q, stored in arrays RX, RY, and IR as if
output by IUCALC, subroutine REMAIN computes those portions of Q outside

all land masses. Polygon Q is computed in REMAIN from an input polygor

|
|
t
!
|
|
|

contained in arrays XPC and YPC; from the centroid, (XCEN, YCEN), of the

input polygon; and from a scale factor, ALPHA.

The DO-1000 loop computes Q using Eq. (59). The DO-4000

loop is over the number of land masses. At itcration IL of the DO-4000
loop, the number, NO, of polygons currently stored in RX, RY, IR is de-
termined. The DO-3000 loop is over NO,

At iteration IP of the DO-3000 loop, the IP-th polygon in
RX, RY, IR is tested for intersection with land mass IL. RECTAN is i

81

called to compute the rectangle circumscribing polygon IP. Function
MINIMAX is applied to the rectangles circumscribing polygon IP and land
mass IL. At this point, if the polygon does not intersect the land mass,
the polygon is copied into arrays XWO and YWO by subroutine INTO and no
further operation in the DO-3000 loop is executed. If a nonempty inter-
section between the polygon and land mass is still possible, the negative
intersection of the land mass with the polygon is determined by a call

to IUCALC. If no error is detected (in fact, if JMAX > 0), the last
operation of the DO-3000 loop copies the result into arrays XWO and YWO
by calling subroutine INTO.

Next, the DO0-4000 loop copies the polygons computed by
the DO-3000 loop from XWO and YWO to RX and RY, respectively. The last
operation of the D09-4000 loop transfers the index of the start of each

polygon and the number of vertices in each polygon from NUM to IR.

Thus the portions of Q outside all land masses are deter-
mined. These are called the remainder polygons, and the x and y coordi-

nates of the IP-th remainder polygon are stored, respectively, in

XWO(NUM(1,REM(1,LL)+IP)+I) and YWO(NUM(1,REM(1,LL)+IP)+I),
1 < I s NUM(2,REM(1,LL)+IP).

The last operation in REMAIN computes the arca of the
largest polygon in the remainder polygons. As currently implemented,
the subroutine docs not incorporate the negative contribution of holes

in calculating the arecas of the remainder polypons.

Subroutine INTO has as input paramcters arrays X§, YS,
and IS (which are assumed to contain a sct of polygons as if output by
IUCALC); and JMIN, JMAX, LL, MAXPOL, IP, and IL., Given these input
parameters, the DO-3000 loop of INTO copics polygon JO, JMIN - JO s JMAX,
from XS and YS into XWO and YWO, respectively. The x and y coordinates
of polygon JO are stored, respectively, in XWO(NUM(L,KO)+I) and
YWO(NUM(1,K0)+I), where

1 < I < NUM(2,KO), REM(1,LL)#MAXPOL + 1 -. KO -. REM(1,LL) + MAXPOL +
JMAX-JMIN+L, and NUM(2,K0) = IS(2,J0).
INTO then updates NUM, REM, and MAXPOL.

82

i

!.
|
'ﬁ

r——_———, — NN R

Given an input polygon, P, contained in arrays XPC and
YPC, subroutine GOLDSEC uses the method of Golden Section to generate a
polygon Q according to Eq. (59) such that the largest remainder polygon
in Q, q*, has area close to that of the input polygon. Thus the method
of Golden Section determines an optimal scale factor. The subroutine
first computes the area, A, and the centroid, (XCEN,YCEN), of the input
polygon, The stopping criterion, ACLOS, is also computed. Subroutine
GOLDSEC returns control to POSINT whenever the area of q* is within
ACLOS of A. In order to apply the method of Golden Section, upper and
lower bounds on the optimal scale factor must be determined; thus
GOLDSEC next determines upper and lower bounds for the optimal scale
factor. The lower bound for the optimal scale factor is always one.
GOLDSEC determines the area of q* when the scale factor generating Q is 1.
This is accomplished by the first call to subroutine REMAIN. If the
stopping criterion remains unsatisfied, the DO-1000 loop is executed.

The DO-1000 loop determines an upper bound for the optimal scale factor.

At each iteration, the DO-1000 loop computes a larger scale factor, NEXT;

determines the area of the corresponding gq* by calling REMAIN; and com=-
pares the area to A, The iterations continue until the stopping criterion ‘
is satisfied; or the area exceeds A, in which case NEXT is the upper
bound for the optimal scale factor and control is transferred to label
1100; or the upper limit, KAY, of the DO-1000 counter is exceeded. In
the event KAY is exceeded, the subroutine gives the operator the option
of returning to label 100 of the main program or continuing the calcula-

tion of the upper bound.

Label 1100 marks the beginning of the Golden Section
iterations. The upper and lower bounds of the optimal scale factor are, ;
respectively, NEXT and SCALE. The DO-3000 loop determines a new interval

containing the optimal scale factor, computes a new scale factor, deter- ’

mines the area of the q* corresponding to this new scale factor, and 1
compares this area to A, The iterations continue until the stopping

criterion is satisfied or the upper limit, KAY, of the DO-3000 counter

is exceeded. In the event KAY is exceeded, the subroutine gives the

operator the option of accepting one of the last two scale factors

83

generated, or returning to label 100 of the main program, or continuing

the Golden Section iterations.

b. Velocity and Land Interaction

Subroutine MOVECEN calls the land interaction algorithm
and stores the recomputed velocity distribution in distribution (2,M1,N).
The DO-4000 loop is over the number of polygons in the velocity distribu-
tion. At iteration J1 of the DO-4000 loop when land is defined, the
centroid, (XO0,Y0), of predicted polygon J1l is computed. Then the DO-3000
; loop is executed., The DO-3000 loop is over the number of land masses.

At iteration IL of the DO-3000 loop, (X0,Y0) is checked for containment
within land IL. This check is accomplished by the following operations,
First a call to function MINIMAX determines whether (X0,Y0) is contained
in the rectangle circumscribing land IL. When (XO0,Y0) is not contained

in the rectangle, no further operation of the DO-3000 loop is executed.

When (X0,Y0) is in the rectangle, containment in land IL is possible.
Consequently, function ENSYD2 is called to determine if (XO0,Y0) is in
land IL.

If (X0,Y0) is not in land IL, no further operation of the
DO-3000 loop is executed. Otherwise, two copies of polygon J1 are gene-
rated such that their centroids are not in any land mass. First, the \
operator associates to each copy a proportion of the weight assigned to ‘
polygon J1. [CPROB(1) and CPROB(2) are the proportions associated with,

respectively, the counterclockwise and clockwise copies.] Next, sub-

routine NEWCEN is called to compute a centroid of each copy outside all
land masses. (VX(1),VY(l)) and (VX(2),VY(2)) are the centroids, re-

spectively, of the counterclockwise and clockwise copies.

Subroutine NEWCEN implements the algorithm for computing

L e

centroids outside of land masses described in the previous section. The

DO-3000 loop is executed twice, once for cach copy. The variable TIME

e

counts the absolute number of candidates generated for a particular copy.
When TIME exceeds COUNT, the display operator has the option of return- 2

ing control to label 100 of the main program or continuing the iterations.

84

The DO0~2000 loop iteratively computes a candidate for the centroid (X1,Yl),
and then checks it for containment in any land mass. The check is pri-
marily accomplished by the DO-1000 loop. This loop also recomputes the
variables, D1 and D2, controlling the angle between successive centroid

candidates.

When control returns to MOVECEN, the DO-1000 locp is exe-
cuted. At iteration K, the DO-1000 loop computes a copy of polygon J1
with its centroid at (VX(K),VY(K)). After the copy is computed, VEC is
called to draw it on the display; PUT is called to store it as polygon JJ
of distribution (2,ML,N); and its weight is computed, P(J) = P(J1l) °*
CPROB(K). After the DO-4000 loop finishes execution, subroutine UPDATE

is called to compute distribution statistics.

85

s —— .

IV POLYGON RESEARCH COMPUTER PROGRAM

A. General

This section discusses the interactive capability of the computer
program used to test the algorithms that we developed. Appendix A lists
the FORTRAN source code for Program POL. This program controls the
graphics terminal and calls algorithm subroutines. All of the subrou-
tines that we developed are in Appendix A. Figure 20 shows the structure
of the polygon research program. Appendix B lists the FORTRAN source
code for IUCALC, which was obtained from Oak Ridge National Laboratory
and modified for the CDC 6400,

B. Interactive Capability

The computer program is designed to be used in an interactive mode
on the Tektronix 4025 graphics terminal. When the binary file is exe-
cuted, the computer initializes variables, teaches the terminal certain

function keys, and draws a border around the graphics area.

First, the computer allows the operator to define land masses. The

following message is printed below the graphics area:
DEFINE LAND (Y OR N)

The computer waits for the operator to type Y (for yes) or N (for

no). Waen the operator types Y, the computer responds with the message:
USE LAND FILE? (Y OR N)

1f the operator types Y, the computer assumes that a properly formatted
file named TAPE9 is available to be read with an unformatted READ state-
ment. If the user types N, or, after reading TAPE9 the computer prints

the message:

DEFINE LAND FROM TERMINAL? (Y OR N)

87

.-

- -
S e i) LS N TR R S

> AREA

—DATA
VEC
‘——DDRAW—[:
PJOUT
———& ELLP
——» EIGEN
—KFX
——»GET
FY
GET
p
e R8T
VEC
= MOM —— CENTRD
——— MOVE
—& ENSYD2
— MINIMAX ENSYD?2
—-D-NEWCEN——-[:
MINIMAX
—— MOVECEN >
EC PUT EIGEN
— UPDATE —EMOM —pCENTRD
SAVE —+AREA
VEC CENTRD |—#INTO
— GOLDSEC NUSCALE }—#1UCALC
REMAIN ———®MINIMAX
— AREA IUCALC L& RECTAN
CONCLDE MiNIMAX g AREA
’ —»POSINT RECTAN —-INTO
—>ruT REMAIN—— o MIRIVAX
—> & RECTAN
VEC
POL—
——» MOVMENT coLL IUCALC
‘L’CUMUN_EPRE'U RECOVER—'E:ROU
ROU SELECT ————=# AREA
—»AREA
—NORTH IUCALC
— nUCUMUN—]—®-PREIU nscoven ROU
—»ROU VEG SELECT——-DAREA
f—®>SELECT ————9-AREA
EIGEN
L—= UPDATE MOM———CENTRD
SAVE
p———=>NORM & PJOUT
= 0AK - (UCALC
—eruT
p——p» SAVE
et SECR
}—>VEC

—WEIGHT

FIGURE 20 STRUCTURE OF POLYGON RESEARCH PROGRAM

S N i e g

88

e Gk XE e

AD-A087 596 SRI INTERNATIONAL MENLO PARK CA £/6 17/7
POLYSON REPRESENTATION OF TARGET LOCATION UNCERTAINTY FOR OCEAN=-ETC(U)
MAY 80 L C GOMEEN) J R OLMSTEAD oou-'ro-c-o;gq

UNCLASSIFIED

202

o
‘Bomr 996

END
e
eineo
9-80
o |

r-—————-—m~~—-—~~ o7

If the operator types Y, the computer permits the vertex-by-vertex input
of as many land masses as space permits. After inputting a land mass

from the terminal, the computer queries:

MORE LAND? (Y OR N)

The operator may input another land mass if Y is typed. If the operator
types N, the computer will respond with:

SAVE LAND ON UNIT 10? (Y OR N)

Typing Y will save the land masses currently displayed on the terminal
on a local file named TAPE10, (Unless saved on a permanent file, TAPELO

ceases to exist at the end of the terminal session.) When the computer

prints:

HOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENT OF
INPUT ARFA) F10.5

The operator should respond with the percent of allowed discrepancy be-

tween the area of the predicted position polygon, as computed by the

prediction algorithm, and the area of the predicted position polygon
after land interaction., The quantity is stored in CLOSE. The percent
should be expressed in F10.5 format.

Then the computer prints the following message below the graphics

area:
FUNCTION: DERLMCIUNPSVT

and waits for the operator to respond with one of the above code letters
(followed by three (or fewer) integers (for example, D6, I127, or V).

The code letters stand for functions that are available to the operator:

Define a multipolygonal probability distribution.
Draw the error ellipse associated with a distribution,
Redraw a distribution.

Label a distribution.

Translate and rotate a distribution.

Change the polygon weights of a distribution.

- o X ¢ " = U

Perform an intersection fusion of two distributions.

89

U Perform a union of two distributions.

Perform a negative intersection fusion of two distribu-

tions,

P Calculate the conditional probability of one distribu-
tion, given another distribution.

S Display the amount of space left in the distribution
arrays.

v Change to velocity space.

Set the time step or calculate the predicted target
distribution,

In addition to the capability implied by the above letter functions, the

terminal is taught certain function keys:

PT Send the position of the cursor to the computer
and print an asterisk at the point.

] Designate the last point of a polygon (type
before using PT).

RUB OUT Erase the entire graphics area, including the
border.

/

Redraw the border.
Shift ERASE Draw erase vectors,
. Draw solid line vectors.

@ Draw dashed line vectors. .

The remainder of this section discusses the use of the letter-functions,

1. Defining a Distribution

A multipolygonal probability distribution is defined by typing
D and the number, N, of the target distribution (N = 1, 9); for example,
D6 will define target distribution number 6. The computer then returns

the following message:
PO EL PS SE GA BO RB CZ

and the operator picks one of the above letter combinations and types it
on the terminal. The letter combinations stand for various kinds of

polygons as shown in Figure 21 and described below:

90

i

ey

L T WYL &, W -

!
?

S PO o e
ELLIPSE
OR
CIRCLE
{a} DISTRIBUTION ELEMENTS
%BEAR‘NG RANGE AND BEARING
GAUSSIAN
APPROXIMATION CONVERGENCE
ZONES

PO

EL

PS

SE

BO

(b} PROGRAMMED DISTRIBUTIONS

FIGURE 21 DEFINING DISTRIBUTIONS

Arbitrary polygon that has each vertex designated by the
operator. The vertices may be entered clockwise or
counterclockwise,

Elliptical polygon of 16 sides. The center is designated
first, then the end of the major axis, and finally the
end of the minor axis (the direction of the minor axis is
not important, only the magnitude is used).

Pie slice polygon., The center point and the end of the
radius at the midpoint of the angle are designated. Then
the value of the angle is typed in.

Sector polygon. The center point, the end of the outer
radius, and the end of the inner radius are designated,
and the angle of the sector typed in.

Gaussian approximation distribution. The 2-sigma ellipse
is designated as in EL above. The distribution is a
weighted combination of the 1,2,3-sigma elliptical
polygons.

Bearing-only distribution. The origin and the maximum
likely range (in the direction of the bearing line) is
designated, then the bearing sigma is typed in. The

91

—eedl

U UL Sy SR uiipy RS

S . A W N Vo e

T =i

ey

computer draws the l- and 2-sigma polygons. The 2-sigma
polygon is drawn with the designated range plus 10 per-
cent. The polygons are weighted to simulate normally
distributed bearing.

RB Range and bearing distribution. The origin and the range/
bearing point are designated, then the range and bearing
sigmas are typed in. The two polygons are weighted to
represent the l- and 2-sigma contours of normal distributions
in range and bearing.

CZ Convergence zone distribution. The center and the outer

radius of the first zone is designated. The operator sup-

plies the weights for the two zones.

After designating a polygon (PO EL PS SE), the computer asks
the operator to type in a weight for the polygon. If a height is desired
instead, then the operator types in O and the computer will ask for the
height of the polygon. Both height and weight are relative measures and

are normalized by the computer.

Upon receiving the polygon weight the computer returns the

message:
MORE POLYGONS? (Y OR N)

1f the operator wishes more polygons in the multipolygonal distribution,
then he types in Y for yes. Both the polygonal elements (PO EL PS SE)
and the pre-prcgrammed distributions (GA BO RB CZ) can be used to build
complex distributions, Upon typing N for no, the computer normalizes
the weights and calculates and saves the statistics of the distribution,
When finished with these computations, the computer prints out the
normalized weight of each polygon in the distribution, prints the pre-
viously discussed FUNCTION statement, and waits for a new letter code.
The distribution is always a position distribution (L = 1) unless the
operator puts the program in the velocity mode (L = 2) just prior to
using the D-function.

2. Drawing an Error Ellipse

The 2-sigma error ellipse (a l6-sided polygon) of a multipoly-
gonal distribution is drawn by typing E and the number of the distribu-
tion (for example, E6)., The distribution must have been previously

92

SEPRET O

= v

o g

defined. The ellipse is centered on the mean of the distribution. If
the operator wishes the ellipse to be drawn with a dashed line, he pushes

the @ key before typing E6.

3. Redrawing a Distribution

A previously defined distribution may be drawn again by typing
R and the number of the distribution (for example, R6). This function
is useful when the display is cleared by pushing RUB OUT so that distribu-

tions can be redrawn as desired.

4, Labeling a Distribution

The order of the polygons in a distribution can be labeled by
typing L and the number of the distribution (for example, L6). The
integer labels (1 for Polygon 1, etc.) are placed on the first vertex of

each polygon.

5. Moving a Distribution

A distribution may be translated and/or rotated by typing M
and the number of the distribution (for example, M6). The computer then
puts the cursor in the graphics area and two points are designated by
the operator. The first point is the point around which the rotation
takes place; it is also the start of the translation vector, The second
point is the end of the translation vector. The computer then asks for
the angle of rotation. The distribution is rotated around the first
point designated, then it is rigidly translated according to the vector,
Finally, the distribution statistics are recalculated. Although the old
points of the distribution are still in the XY-arrays, there is no
mechanism to retrieve them; only the newly moved distribution is avail-

able to the operator.

6. Changing Polygon Weights

The weights of polygons can be changed by typing C and the

number of the distribution (for example, C6). The computer asks for

93

T IR PN 4T T

= gy

P

. 3 &

i
;~
f
g

the weight (or height) of each polygon, and when finished, normalizes

the weights and calculates the statistics,

7. Fusing Two Distributions

The fusion of two distributions into a third distribution is
performed by typing I or N and the numbers of the distributions being
fused and the number of the resultant distribution. For example, the
intersection of Distribution 4 with Distribution 6 (the result saved as
Distribution 7) is denoted: 1I467. The negative intersection, 4 * 6, is
denoted: N467. If the output distribution is not designated, then the

result is put in Distribution 9.

Usually the display is cleared before typing in the fusion
function because if the input distributions are still on the CRT, then
the output polygons cannot be seen because they lie on top of the input
polygons., The program computes the vertices of the output polygons,

their weights, and the distribution statistics.

8. Conditional Probability

The conditional probability of one distribution, given another
distribution, is calculated by typing C and the numbers of the two dis-
tributions. For example, the conditional probability of Distribution 6,
given Distribution 4, is denoted: P64. The output is printed below the

graphics area and looks like the following:
PROB OF 6 GIVEN 4 = ,27 .

The algorithm really computes a number that is proportional to the condi-
tional probability; only when the first distribution is a single polygcn

does the algorithm return a number that is always between zero and one.

9. Array Status

The memory status of the arrays can be checked at any time by

typing in S. The computer returns a message that gives the amount of

space left in the various arrays; for example:

PRI, 1158 W IR ARSI Sy

kA

3
|
é
:

MEMORY LEFT:
POINTS ... 1370
POLYGONS ... 195
STATISTICS ... 864

"Points" refers to the X and Y arrays; "Polygons" refers to the P, H,

XCEN, YCEN, IA, IB arrays; and "Statistics" refers to the SE array.

10. Velocity Space

A velocity distribution can be defined by typing V, and, after
the computer responds with the FUNCTION statement, typing D and the num-
ber of the distribution for which velocity is defined. The velocity dis-
tribution is defined the same as a position distribution. The polygons
that are drawn represent the uncertainty of the centroid of the position
distribution one time step into the future. The V-function can also
precede other functions, For example, to get an error ellipse of the
velocity distribution associated with Distribution 6, type V then type
E6, The program is automatically returned to position space after a

function is performed.

11. Changing Time

The time index is changed for all distributions by typing TO
and the time step desired., For example, TO3 changes the time to Step 3.
The time step remains the same until changed; time is initialized to

Step 1.

12. Prediction

The predicted position and velocity of a target distribution,
N, at time step, M, are calculated by typing TNM, (N =1, 9; M = 1, 4).
Distribution N must be defined for time step M. For example if distribu-
tion 6 has been defined at time step 2, T62 calculates the predicted
position and velocity of target 6 at the next time step, 3.

The screen is erased and the specified input distribution is
redrawn, When the predicted position polygon will be a positive informa-

tion area, the computer asks:
95

CALL NUCUMUN (Y OR N),

A response ¢f Y results in the use of the quick algorithm for generating
positive information predicted position polygons and is usually given
when the input position polygon is convex. A response of N results in
the use of the exact algorithm for generating predicted position polygons.
Upon calculation, the predicted target distribution is drawn and its
statistics are saved. The computer prints the normalized weights for

each polygon in the distribution.

[—

REFERENCES

R. G. Edwards and P. R, Coleman, "IUCALC-A FORTRAN Subroutine for
Calculating Polygon-Line Intersections, and Polygon-Polygon Inter-
sections, Unions, and Relative Differences,' ORNL/CSD/TM-12, Geo-
graphic Data Systems Group, Computing Applications Department,
Computer Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee (August 1976).

H. L. Wiener, W, W, Willman, and I. R. Goodman, "Naval Ocean-
Surveillance Correlation Handbook, 1978," NRL Report 8340, Naval
Research Laboratory (October 1979), UNCLASSIFIED.

C. E. Pearson, Ed., Handbook of Applied Mathematics, p. 72 (Van
Nostrand Reinhold Company, New York, New York, 1974).

S. Nordbeck and B, Rystedt, "Computer Cartography Point-In-Polygon
Programs," BIT, Vol. 7, 45-46 (1967).

W. I. Zangwill, Nonlinear Programming, p. 121 (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1969).

97

Appendix A

PROGRAM POL SOURCE CODE

S R P g

PROGRAM POL(INPUT,BUTPUT, TAPES= INPUT, TAPES, TAPE8=0UTPUT, TAPE7, P

$ TAPES, TAPE10)

LOGICAL FLAG,LAND, INPUT(2,5,9) .

DIMENSIOGN XCEN(200),YCEN(200), 1A(200),1B(200),JA(2,5,9),JB(2,5,9), '
X(1400),Y(1400),P(200),H(200),SE(900) ,KE(2,5,9), .
LJACT,1,1),LJBCT, 1, 1), :
L1A(200),L1B(200), -
XW(200),YW(200),1W(2,20),8B(17),CB(17),XS(50),YS(50) |

INTEGER COUNT

REAL LAX(1400),LAY(1400), INC,LN(200),LE(200),LS(200),LW(200)

DATA INPUT/90x.FALSE./ '

DATA INC,COUNT/0.5,1/ "

"X X X

DATA PI1/3.141592653/ #
DATA M,N3/1,9/ o
DATA 1LA,JLA,KLA/0,0,0/ 4
WRITE(6,10)

c ENDFILE 6

WRITE(8,10) ¥
10 FORMAT(x$WOR 30 $GRA 2,29,2,79 $SLIN 1x/ -
*$VEC 0,0 0,391 623,391 623,0 0,0x/
*$LEA PT "SREP 01" 13 42x/
*$LEA] 93 08x/
x$|.LEA 127 "$ERA G" 13x/ ”:
x$LEA ¢ "SVEC O 0 O 391 623 391 623 0 0 0" 13x/ d

x$LEA 173 “SLIN E" 13x/
*x$LEA | "SLIN 1" 13x/
*$LEA @ “SLIN 2" 13x)

BB=2.xPl/16.

DO S 1=1,17

B=BBx(1-1)

SB(1)=SIN(B)

CB(1)=Cc0S(8B)

AN=9HANGLE

WE=3HWEIGHT

HE=QHHEIGHT

SGB=9HSIG BRG

SGR:=9HSIG RNG

AHAPDAPD G

[4]
TSR T

xx

xx LAND
LAND=.F.

WRITE(6,60)

c ENDFILE 6

4 WRITE(8,60)

[60 FORMAT(XDEFINE LAND (Y OR N)x) E
READ(5,14) Q |
WRITE(B,14) O !
WRITE(7,14) O
WRITE(8,14) Q
IF(Q.EQ. 1THY) LAND=.T.

IF(.NOT.LAND) GOTG 100

CAL.. MESSAGC(7HPOL , 7ZHLANDEF)

CALL. LANDEF (LAX,LAY,LIA,LIB,LJR,LN,LE,LS,LW,XW,YW)
WRITE(6, 28)

WRITE(8,28)

WRITE(6, 70) 1

c ENDFILE 6]
WRITE(8,70)

70 FORMAT(xHOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENTx,
$ x OF INPUT AREA) F10.5x)
READ(S, 75) CLOSE
75 FORMAT(F10.5)

"

¢

CLOSE=CLOSE/100.
WRITE(6,85) INC,CLOSE

C ENDFILE 6
WRITE(7,85) INC,CLOSE
[ENDFILE 7

WRITE(8,85) INC,CLOSE
85 FORMAT(xINC= x,G11.S,x CLOSE= *,611.5)
WRITE(6,9%) COUNT

c ENDFILE 6
. WRITE(7,96) COUNT
‘ c ENDFILE 7

{ WRITE(8,98) COUNT
96 FORMAT(»THE NUMBER OF [TERATIQNS ALLOWED 1S x, 13,x, x)

xxFUNCT I ON
100 L=1
106 CONTINUE
WRITE(S, 12)
WRITE(8. 12)
c ENDFILE &
12 FORMAT(/*FUNCTION: DERL M C I UNP S V Tx)

4 101 READ(S, 14) F,N,N2,N3
WRITE(6,14) F,N,N2,N3
WRITE(7,14) F.N,N2 N3
WRITE(8.14) F.N.,N2, N3

14 FORMAT(A1,311)
IF(F.EQ. 1HD) GO TO& 110
IF(F.EQ 1HE) GO T 190
IF(F.EQ. 1HR) GO TO 200
IF(F.EG.1HL) GO TO 20%
IF(F.EQ. 1HM) GO TO 210
IF(7.EQ. 1HC) GO TO 220
IF(F.EQ. IHI) GO T8 230
IF(F.EQ.1HU) GO TO 235
IF(F.EQ. 1THN) GO TO 240
IF(F.EQ. 1HP) GO TO 250
1F(7.FQ.1HS) GO TO 260
IF(7.NE. 1HV) GO TO 10S
L=2 $6O TO 106

105 1F(F.NE.1HT) GO T8 100
MzN2
IF(N.EQ.0) GOTO 100
GOTO 500

xx
*xDEFINE PROBABILITY DISTRIBUTIOM
110 JJ=0
IF(_ . EQ.2) WRITE(6,18)
IF(L.EQ.2) WRITE(S,18)
18 FORMAT(xSLIN 2x)
111 JJI=JJ+1
WRITE(6, 20)
c ENDFILE 6
WRITE(8,20)
20 FORMAT(xPO EL PS SE GA BO RB C2Zx)
112 READ(5,22) FF
WRITE(6,22) FF
WRITE(7,22) FF
WRITE(8,22) FF
22 FORMAT(A2)
IF(FF.EQ.2HFO) GO TO 120
IF(FF.EQ.2HEL) GO TQ 125

ey

IF(FF.EQ.2HPS) GO TO 130
IF(FF.EQ.2HSE) GO TO 138
IF(FF.EQ.2HGA) GO TO 140
IF(FF.EQ.2HBO) GO TO 14S
IF(FF.EQ.2HRB) GO TO 150
IF(FF.EQ.2HCZ) GG TO 1535

GO TO 112
x X
xxPOLYGON
120 1MAX=99

X X

121

122

CALL GET(IMAX,XW,YW,X0,YO,R1,R2,D1,D2)

CALL VEC(1, IMAX, XW, YW)

CALL PUT(L,M,N,JJ,IMAX XW,YW,1A,IB,JA,UB,J,X,Y,ILA,JLA)
P(J)=DATA(WE)

IF(P(J)) 180,122,180

HI=DATA(HE)

CALL WEIGHT(HI ,J,P,1A,IB,X,Y)

GO TO 180

**ELLIPSE

X X

X X

* X

AT SR Y™ SO

125

*xxP1E

130

131

135

140

142

IMAX=3

CALL GET(IMAX, XW, YW, X0, YO,R1,R2,D1,D2)
CALL ELLP(XO,YO,R1,R2,D1,D2,SB,CB, XW,YW)
IMAX=17

GO TO 121

SLICE

IMAX=2

CALL GET(IMAX, XW, YW, X0,Y06,R1,R2,D1,D2)
R1=0.

BSO=DATA(AN)

CALL SECR(PI ,BB,BSD,X0,YO,R1,R2,D1,D2, XW, Y¥, IMAX)
IF(L.EQ.1) 60 TO 121

KO=KE(1,M,N)

XC=SE(1+K0O)

YC=SE(2+K0)

CALL MOVE(XO,YO,XC,YC,0.,1, IMAX, XW, YW)
GO TO 121

xxSECTOR

IMAX=3
CALL GET(IMAX,XW,YW,X0,YO,R1,R2,D1,D2)
GO TO 131

xxGAUSSI AN APPROXIMATION

IMAX=3

CALLL GET(IMAX, XW,YW, X0,Y0,R1,R2,D1,D2)
S1=.5xR1

$2=.5xR2

DO 142 NC=1,3

R1=31%NC

R2=32xNC

CALL ELLP(XO,Y0,R1,R2,D1,D2,58,CB, XW, YW)
IMAX=17

CALL VEC(1, IMAX, XW,YW)

CALL PUT(L,M,N,JJ, IMAX, XW, YW, 1A,IB,JA,JB,J,X,Y, LA, JLA)
JJ=JJ+1

JJd=JJ-1

PW=DATA(WE)

P(J)=PWx . 225

P(J-1)=PWx . 536

A-5

intieiiln

x X

P(J-2)=Pwx . 239
GO TO 180

*xBEARING ONLY

145

146

147

x X

IMAX=2

CALL GET(IMAX,XW,YW,X0,Y¥0,R1,R2,01,D2)
R1=0.

R=R2

BC=DATA(SGB) x2.

DO 147 NC=1,2

BSD=BCxNC

R2=R+Rx.1x(NC-1)

CALL SECR(PI ,BB,BSD,X0,Y0,R1,R2,D1,D2, XW, YW, IMAX)
IF(L.EQ.1) GO TO 146

KO=KE(1,M,N)

XC=SE(1+KO)

YC=SE(2+K0O)

CALL MOVE(XO,YO,XC,YC,0.,1, IMAX, XW, YW)
CALL VEC(1, IMAX, XW, YW)

CALL PUT(L,M,N,JJ,IMAX XW, YW, 1A, IB,JA,JB,J, X,Y,ILA,JLA)
JJI=JJ+1

JI=JJ-1

PW=DATA (WE)

P(J)=PWx, 568

P(J-1)=PWx. 432

GO TO 180

**RANGE AND BEARING

150

151

152

x X

IMAX=2

CALL GET(IMAX,XW,YW, 6 XC, Y0, R1,R2,D1,D2)
RC=DATA(SGR) «R2x .01

BC=DATA(SGB) x2.

R=R2

DO 152 NC=1,2

D=RCxNC

R1=R-D $R2=R+D

BSD=BCxNC

CALL SECR(P[,BB,BSD,XO,YO,R1,R2,D1,D2, XW, YW, IMAX)
IF(L.EQ.1) GO TO 151

KO=KE(1,M,N)

XC=3E(1+KO)

YC=SE(2+KO)

CAL'. MOVE(XO,YO,XC,YC,0.,1,1MAX A XW,YW)
CALL VEC(1, IMAX, XW, YW)

CALL. PUT(L,M,N,JJ,IMAX XW,YW, 1A, 1B,JA,JB,J,X,Y,ILA,JLA)
JJ=JJ+1

JJI=JJ-1

PW=DATA(WE)

P(J)=PWx.651

P(J-1)=PwWx . 3149

GO TO 180

*xCOMVERGENCE ZONES

155

IMAX=2

CALL GET(IMAX,XW,YW,X0,YO,R1,R2,D1,D2)

DO 156 ND=1,2

RO=R2xND

RI=ROXx(1.-.1xND)

CALl. SECR(PI!,BB,360.,X0,Y0,RI,R0O,D1,D2,XW, YW, IMAX)

CALL VEC(1, IMAX, XW,YW)

CALL PUT(L,M,N,JJ,IMAX XW,YW,I1A,IB,JA,JB,J,X,Y,ILA,JLA)

e e

xx

*xTEST FOR FINISH AND CALCULATE STATISTICS

c

X X

*xDRAW ERROR ELLIPSE

xx

**REPEAT DISTRIBUTION

xx

156

180

24

185

186

28

190

200

P(J)=DATA(WE)

IF(P(J).GT.0.) GO TO 156

HI =DATA(HE)

CALL WEIGHT(HI,J,P,1A,IB,X,Y)
JJI=JJI+1

JJ=JJ-1

GO TO 180

G T SN

WRITE(6,24)

ENDFILE 6

WRITE(8, 24)

FORMAT (*MORE POLYGOMNS? (Y OR N)x)
READ(S5,14) Q

WRITE(6,14) Q

WRITE(7,14) Q@

WRITE(8,14) Q

IF(Q.EQ.1HY) GO TO 111

J1=JA(L,M,N)

J2=JB(L.,M,N)

CALL NORM(J1,J2,P)

CALL MOM(J1,J2,1A,1B,X,Y,P,H EX, EY,EXX,EYY,EXY,XCEN, YCEN)
IF(EXX.GT.O0..AND.EYY.GT.0.) GO TO 187
WRITE(6, 25)

ENDFILE ©

WRITE(8, 25)

FORMAT (*NEGATIVE VARIANCEx/)

GO TO 100

CALL EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)
CALL SAVE(L,M,MN,EX,EY,R1,R2,D1,D2,EXX,EYY,EXY, SE,KE,KLA)
INPUT(L,M,N)=. T,

WRITE(6,28)

WRITE(8,28)

ENDFILE ©

WRITE(8, 28)

FORMAT(xSLIN 1x)

GO TO 100

T

KO=KE(L,M,N)
EX=SE(1+KO)
EY=SE(2+K0)
R1=SE(3+KO)
R2=SE(4+KO)
D1=SE(5+K0O)
D2=SE(6+KO)

CALL. ELLP(EX,EY,R1,R2,D1,D2,S8,CB,XW, YW)
CALL VEC(1,17,XW,YW)
WRITE(6,28)
WRITE(®8, 28)

GO TO 100

CALI. DRAW(L ,M,N,1A,IB,JA,JB,X,Y,P)
WRITE(6,28)
GO TO 100

xxLABEI. POLYGONS

E

205

J1=JA(L,M,N)
J2=JB (L, M, N) 1
JC=0

DO 206 J=J1,J2
JC=JCH+1
I1=1AC(J)
X1=X(11)
Yi=Y(l1)

206 WRITE(6,30) X1,Y1,JC

WRITE(8,30) X1,Yt,JC
30 FORMAT(*$VEC x,2(F10.0,1X),x$STR #x, 11, x#x)
GO TO 100
x %
xxMOVE DISTRIBUTION

210 IMAX=2
CALL GET(IMAX,XW,YW,X0,YO,R1,R2,01,D2)
XC=XO0+R2xD1
YC=YO+R2xD2
ANG=DATA (AN)

J1=JAL, M, N)
J2=JB(L,M,N)
DO 211 J=J1,J2
I1=1A(J)
12=1B8(J)

211 CALL MOVE(XO,YO,XC,YC,ANG,11,12,X,Y)
CALL DRAW(L,M,N,1A,iB,JA,JB,X,Y,P)
WRITE(6, 28)

WRITE(8,28)
GO TO 186

x X
*xCHANGE WEIGHTS

220 J1=JACL,M,N)
J22JB(L,M,N) ‘
DO 223 J=J1,J2 :
JP=J-J1+1 :
XS(J)=P(J)/H(J)
WRITE(6,32) JP
WRITE(8,32) JP

32 FORMAT (xWEIGHT OF *,12)
READ(5,33) P(J)
WRITE(6,33) P(J)
WRITE(7,33) P(J)
WRITE(8,33) P(J)

33 FORMAT(F10.0)
IF(P(J)) 223,222,223

222 WRITE(6,38) JP
WRITE(8,38) JP

38 FORMAT(*HEIGHT OF x,12)
READ(S, 33) HI
WRITE(6,33) HI
WRITE(7,33) HI
WRITE(8,33) HI
CALL WEIGHT(HI,J,P,1A,1B,X,Y)

223 CONTINUE
CALL NORM(J1,J2,P)
DO 225 J=J1,J2

225 H(J)=P(J)/XS(J)
Go TO 186

=%
**FUSION (INTERSECTION, UNION, AND NEGATIVE INTERSECTION)
230 KL=2 $GO TO 241 !
235 KL=1 $GO TO 241
240 KL=4
241 JP1=JA(L,M,N)

A-8

x X

taaud o . - ’ Gddhaio o ’ B a0

243

246

248
249

JP2=JB(L,M,N)
JQ1=JA(L,M, N2)
JQ@2=JB(L,M, N2)

JJ=0

DO 249 JP=JP1,JP2

DO 249 J0O=JQ1, J0A2

CALL OGAK(KL,JP,JQ,I1A,IB,X,Y, XW, YW, IW, JMAX)
IF(JMAX)255, 249, 243
HPQ=H(JP)xH(JQ)

DO 248 JO=1, JMAX
10=1W(1,J0)

IM=1w(2,J0)

DC 246 [=1,1IM
XS(1)=XW(]+10)
YS()=YW(1+10)

IM=IM+1

XS(IM)=XS(1)

YS(IM)=YS(1)

CALL VEC(1,1M,XS,YS)
JJ=JJ+1

CALL PUT(L,M,N3,JJ,IM,XS,YS, 1A, IB,JA,JB,J, X,Y, ILA,JLA)
P(J)=HPQ*AREA(XW, YW, IW, JO)
CONTINUE

N=N3

GO To 185

xx CONDITIONAL PROBABILITY

250

PROB=0.

JP1=JA(L,M,N)

JP2=JB(L,M,N)

JQ1=JA(L,M,N2)

Jaz=JB(L,M, N2)

DO 2%4 JP=JP1,JP2

DO 254 JQ=4aQi,Jaz

CALL OAK(2,JP,JQ,1A,IB,X,Y, XW, YW, IW, JMAX)
[F(JMAX) 255, 254,251

251 HPQz=H(JP)xH(JQ)
DO 252 JO=1,JMAX
252 PROB=PROB+HPQxAREA(XW, YW, IW, JO)
254 CONTINUE
PROB=PROB/ABS(H(JP1))
WRITE(6,34) N,N2,PROB
WRITE(8,34) N,N2,PROB
34 FORMAT(xPROB OF x,[2,x GIVEN x,12,x =x,F%.2)
GO TO 100
255 WRITE(6,3%5) JMAX
WRITE(8,3%5) JMAX
35 FORMAT(x[UCAL.C ERROR x,[3)
GO TO 100
x X
xxSTATUS
260 1CO=1400-~1LA
JCO=200-JLA
KCO=900-KLA
WRITE(8,36) 1CO, JCO,KCO
WRITE(6,36) 1CO,JCO,KCO
36 FORMAT(«MEMORY LEFT:x,k 3X,
s *x POINTS...x,[4,3X,
$ = POLYGONS. . .x,13,3X,
s x STATISTICS...x,I13)
GO TO 100

—d

I ERLTTTITT _.mu;.ﬁ:y) 7oy

Sty O =Rty

XX
*xPREDICTIOM ALGORI!THM
500 CONTINUE

M1=M+1

WRITE(8,48)

WRITE(6,48)

48 FORMAT(xSERA Gx)
WRITE(8,50)
WRITE(6,50)

50 FORMAT(»SLIN 4x)

CALL DRAW(1,M,N,1A,IB,JA,JB,X,Y,P)

CALL DRAW(2,M,N,1A,1B,JA,JB,X,Y,P)

IFC.NOT.LAND) GOTO 700

WRITE(6,5S)

WRITE(8,55)

55 FORMAT(x$LIN 8x)
LAN=LJB(1,1,1)

DG 600 J=1,LAN

[1=L1ACY)

12=Li8(J)

CALL VEC(I11,12,LAX,LAY)
600 CONTINUE

700 CONTUINUE
WRITE(6,28)

C ENDFILE 6

WRITE(8, 28)

CALL. MESSAGC(7HPOL , 7HMDOVMENT)

CALL. MOVMENT(M,N,JA,JB,X,Y, 1A, IB,P, XCEN, YCEN,
$ XW,YW,J,ILA,JLA, FLAG SE,KE,KLA,H, LAX,LAY,LIA,LIB,
$ LAM,LAND,LN,LE,LS,LW,INC,CLOSE)

CALL. MESSAGA(7HPOL)

IFC.NOT.FLAG) GOTO 100

CALIL. MESSAGC(7HPOL , 7HMOVCEN)

CALL MOVECEN(M,N,JA,JB,X,Y,1A,IB,P,SE,KE, KLA,
$ XW,YW,J,IlLA, JLA,XCEN,6YCEN, H, LAX, LAY, LIA,LIB,
$ LAM LAND,LN,LE,LS,LW, INPUT,COUNT,FLAG)

CAL'. MESSAGA(7HPOL)

GOT9 100

END

FUNCTION FX(C)
FX=3+8%(C-2) |
RETURN 1
END ‘

FUNCTION FY(R) %
FY=7+14%(29-R) :
RETURN
END

FUNCTION COL (X)
COL.=2 . 5+(X-3.)/8.
RETURN

END

FUNCTION ROW(Y) ‘
ROW=29.5-(Y-7.)/14.

RETURN

END

A-10

200
300

100
200
300
400
500

10

20

30

40

FUNCTION DATA(A)
WRITE(6,200) A
ENDFILE 6
WRITE(8,200) A
READ(5,300) DATA
WRITE(6,300) DATA
WRITE(7,300) DATA
WRITE(8,300) DATA
FORMAT (A9)
FORMAT(F10.0)
RETURN

END

SUBROUTINE GET(IM,X,Y,X1,Y1,R1,R2,D1,D2)
DIMENSION X(1),Y(1),R(3)
FORMAT(x$JUM 15,40%/xSWOR Kx)
FORMAT (xPOINTx)
FORMAT(8X,F3.0,1X,F3.0,1X,A1)
FORMAT (x$MON Kx)
FORMAT(13(4(*$VEC *,2F7.0,*x$STR 136%)/))
WRITE(6, 100)

ENDFILE 6

WRITE(8, 100)

DO 10 1=1,IM

WRITE (6, 200)

ENDFILE 6

WRITE(8, 200)

READ(S, 300) ROW, COL, SYM
X(1)=zFX(COL)

Y1) =FY(ROW)

IF(SYM.EQ.1H1) GO TO 30
CONT I NUE

DO 20 1:2,IM

P=XC1)-X(1)

Q=Y (1)-Y(1)

R{1)=SQRT(PxP+QxQ)
X1=X(1) s$Yi1=Y(1)
R1=R(3)
R2=R(2)

DIi=(X(2)~-X(1))/R2
D2=(Y(2)-Y(1))/R2

GO TO 40

IM=1+1

XCIM)Y=X(1)

YCiMI=yY(1)

WRITE(6,400)

ENDFILE 6

WRITE(8,400)
WRITE(6,300)(X(1),Y(1),1=1,1M)
ENDFILE 6

WRITE(8,300) (X(1),Y(I),1=21,[M)
RETURN

END

SUBROUTINE PUT(L,M,N,JJ,IM XW, YW, 1A, 1B,JA,UB,J,X,Y,IL,JL)

DIMENSION XW(1),YW(1),1A(1),IB(1),JA(2,5,9),JB(2,5,9),
X1),¥(1)

JL=JL+1Y

IF(JJ.EQ. 1) JA(L, M, N)=JL

J=JB(L,M,N)=JL

DO 10 1=1,1IM

. VT P A

10

10

20

100
200

10

XCIL+1)=XW(1)
YUIL+D)=YW(])
TA(J)Y=1L+1
IL=1L+IM
IB(J)=IL
RETURN

END

SUBROUTINE MOVE(X1,Y1,X2,Y2,ANG, 11,12,X,Y)
DIMENSION X(1),Y(1)
A=ANGx3.1416/180.
SA=SIN(A)

CA=COS(A)

Do 10 I=11,12
X1=X(1)-X1
Yi=Y(1)-Y1
XC1)=X2+X1 xCA+Y | *SA
Y(1)=Y2+YIxCA-XI*SA
RETURN

END

SUBROUTINE NORM(J1,J2,P)
DIMENSION P(1)
SUM=0.

DO 5 J=J1,J2
SUM=SUM+P (J)
IF(SUM.LE.O.) STOP 1
Do 20 J=J1,J2
P(J)=P(J)/SUM

CALL PJOUT(J1,J2,P)
RETURN

END

SUBROUTINE PJOUT(J1,J2,P)
OIMENSION P(1)

JM=J2-J1+1

WRITE(6, 100) (JC,JC=1,JM}
WRITE(?7,100) (JC,JC=1,JM)
WRITE(8,100) (JC,JC=1,JM)
WRITE(6,200) (P(J),J=J1,J2)
WRITE(7,200) (P(J),J=J1,J2)
WRITE(8,200) (P(J),J=J1,J2)
FORMAT (x POLYGON: x,9(14,3X))
FORMAT(x WEIGHT: x,9(F5.2,2X))
RETURN

END

SUBROUTINE ELLP(XC,YC,R1,R2,D1,D2,SB,CB, XW, YW)
DIMENSION SB(1),CB(1),XW(1),YW(1)

DO 10 1=1,17

XB=R1xSB(1l)

YB=R2xCB(1)

XW(1)=XC+XB*xD2+YBxD1

YW(1)=YC+YBxD2-XBxD1

RETURN

END

SUBROUTINE DRAW(L,M,N,1A,IB,JA,JB X,Y,P)

DIMENSION TA(1),1B(1),JA(2,5,9),JB(2,5,9),X(1),Y(1),P(1)
J1=JA(L,M,N)

J2=JB(L, M, N)

A-12

s e

.

£
.f
:
¥
I
!

20

560

55

60
70

80

DG 20 J=J1,J2
I1=1A())

12=1B(J)

CALL VEC(I11,12,X,Y)
CALL PJOUT(J1,J2,P)
RETURN

END

SUBROUTINE VEC(11,12,X,Y)
ODIMENSION X(1),Y(1)

WRITE(6,560) ((X(1),Y(1)),1=11,12)
ENDFILE 6

WRITE(8,560) ((X(1),Y(1)),1=11,12)
FORMAT (x$VEC *»,9(18F7.0,x & x/))
RETURN

END

SUBROUTINE MOM(J1,J2,1A,1B,X,Y,P,H,EX,EY,EXX,EYY,EXY, XCEN, YCEN)
DIMENSION XCENC(1),YCEN(1),TAC1),IBC1),X(1),Y(1),PC1),H(1)
EX=EY=EXX=EYY=EXY=0.

DG 55 J=J1,J2

11=1A(J)

12=1B(J) -1

CALL MESSAGC(7HMOM , 7HCENTRD)

CALL CENTRD(I1,12,X,Y,A,AX, AY, AXX,AYY, AXY)

XCEN(J)=AX/A
YCEN(J)=AY/A
2=P(J)/A
EX=EX+Z2xAX
EY=EY+ZxAY
EXX=EXX+Z*xAXX
EYY=EYY+ZXAYY
EXY=EXY+ZxAXY
H(J)=P(J)Y/ABS(A)
CONTINUE
EXX=EXX-EX*EX
EYY=EYY-EYxXEY
EXY=EXY -EX*EY
RETURN

END

SUBROUTINE EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)
IF(EXY.NE.O.) GO TO 70

IF(EXX.GT.EYY) GO TO 60

D1=0. s$D2=1.

U=EXX $V=EYY $GO TO 80

D1=1. sD2=0.

U=EYY $V=EXX $GO TO 80
EE=EXY*EXY

P=EXX+EYY

Q=SQRT((EXX-EYY)%xx2+4 . xEE)
U=(P-Q)/2.

v=(P+Q)/2,

W=V-EXX

D=SQRT(EE+WxW)
D1=EXY/D

D2=W/D

R1=0.

IF(U/P.GT.1.E-100) R1=2.%SQRT(UV)
R2=22. xSQRT (V)
RETURN

A-13

=~

T . v, K

e

|
;
E
?

96

98

END

SUBROUTINE SAVE(L,M,N,EX,EY,R1,R2,D1,D2,EXX,EYY, EXY, SE,KE, KL)
DIMENSION SE(1),KE(2,5,9)
SE(1+KL)=EX

SE(2+KL)=EY

SE (3+KL)=R1

SE(4+KL)=R2

SE(S5+KL) =D

SE(6+KL)=D2

SE(7+KL) =EXX
SE(8+KL)=EYY

SE(9+KL) =EXY
KE(L,M,N) =KL

KL=KL+9

RETURN

END

SUBROUTINE SECR(P1!,BB,BSD,XC,YC,RIl,RO,RXO, RYD, XW, YW, IMAX)
DIMENSION XW(1),YW(1)
BS=BSDxP1/180.
AL=ATAN2(RX0O,RYO) -BS/2.
iB=Bs/BB+.5
IF(IB.LE. Q) IB=1
B1=BS/1B

I1BO=1B+1

IMAX=2x1BO+1

DG 86 1=1,1BO
B=BIx(1-1)+AL
SBB=SIN(B)

cBB=COS(B)
XW(I)=XC+RO*xSBB
YW(1)=YC+ROxCBB
IF(Rl . EQ.0.) GO TO 96
J=1MAX -1
XW(J)=XC+R1=*SBB
YW{(J)=YC+RI*CBB
CONTINUE

IF(R1.6T7.0.) GO TO 98
IMAX=1B0O+2
XW(1BO+1)=XC
YW(1BO+1)=YC

XW(IMAX) =XW(1)
YW(IMAX) =YW(1)

RETURN

END

SUBROUTINE OAK(KL,JP,JGQ,1A,IB,X,Y,RX, RY, IR, JMAX)
DIMENSION PX(50),PY(50),0X(50),QY(50),WK(300),

$ RX(1),RY(1),IR(2,1),X(1),Y(1),1A(1),1IB(Y))

127

128

NP=1B(JP)-1A(JP)
NQ=1B(JQ)-TACJQ)
IP=1A(JP) -1
19=1A(JQ) -

DO 127 1=1,NP
PX(I)=X(1+IP)
PY(1)=Y(1+IP)

DO 128 (=1,NQ
AX(T)=X(1+1Q)
QY()=Y(1+1Q)
CALL 1UCALC(PX,PY NP,0OX,QY,NQ, KL, WK, 300, JMAX, IR, 20, RX, RY, 200)

A-14

e T

0

|
!
f

o000

50
60

50

RETURN
END

FUNCTION AREA(XW,YW, IwW, JO)
DIMENSION XW(1),YW(1),1W(2,1),XS(50),YS(50)
CALL MESSAGA(7HAREA)
AREA=0.

[0=IW(1,J0)+1
IMM=1W(2,J0)+1W(1,J0) -2
XWI=XW(10)
YWi=YW(10)

DO S50 1=10,IMM
BX:=XW(I+1)-XW1
BY=YW(1+1)-YW!
CX=XW(1+2)-XW1
CY=YW(I+2)-YW!
Al=.S5x(CX*BY-BXxCY)
AREA=AREA+A1
WRITE(7,60) AREA

FORMAT (xAREA 1S %,615.5)
CALL MESSAGR(7HAREA)
RETURN

END

SUBROUTINE WEIGHT(H,J,P,1A,I1B,X,Y)
DIMENSIOM P(1),1AC1),IB(1),X(1),Y(1)
11=1A0J)

12=1B(J) -3

A=0.

X1=X(11)

Yi=sydlrt)

DO S50 1=11,12

BX=X(1+1)-X1

BY=Y(I1+1)-Y1

CX=X(1+2)-X1

CY=yY(1+2)-Y}

Al=, 5x(CXxBY-BXxCY)

A=A+Al

CONT{NUE

P(J)=AxH

RETURN

END

SUBROUTINE LANDEF(LAX,LAY,L1A,LIB,LJB,LN,LE,LS,LW,
$ XW,YW)

LANDEF AT USER OPTION DEFINES LAND MASSES BY ACCESSING A LAND FILE ON
UNIT 9 OR BY TERMINAL INPUT

DIMENSION XW(1),¥W(1),LIA(200),LIB(200),LJACT,T1,1),LJB(T,1,1)
LOGICAL FLAG

REAL LAX(1400),LAY(1400),LW{(200),LN(200),LE(200),LS(200)
DATA LiIL,LJL/0,0/,JJ,J2/0,0/

DATA 12/0/

CALL MESSAGA(7HLANDEF)

WRITE(6,7)

WRITE(8,7)

FORMAT (=SLIN 8x)

LJdBe1,1,1)=0

FLAG= .F.

g—

10

20

100

130
200

30

300
320

325

40

400

50

500

600

WRITE(6,10)

WRITE(8,10)

ENDFILE 6

FORMAT(x USE LAND FILE? (Y OR N) x)
READ(S5,20) @

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

FORMAT (A1)

IF(Q.EQ. THY) 100, 200

CONTINUE

READ(9) LAX,LAY,LIA,LIB,LJA,LJB,LW,LE,LN,LS
FLAG=.T.

J2=L4B(1,1,1)

DO 130 J=1,J2

11=L1A(J)

12=L18(J)

CALL VEC(I11,12,LAX,LAY)

CONTINUE

CONTINUE

WRITE(G, 30)

WRITE(8, 30)

ENDFILE 6

FORMAT (x DEFINE LAND FROM TERMINAL? (Y OR N)x)
READ(5,20) Q

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

IF(Q.EGQ. 1HY) 300,400

CONTINUE

IF(FLAG) 320,325

CONTINUE

JJ=J2

CONT I NUE

IMAX=99

JJI=JJ+1

CALL GET(IMAX, XW,YW,X0,YO,R1,R2, D1,D2)
CALL VEC(1, 1MAX, 6 XW,YW)

CALL PUTC(1,1,1,JJ,IMAX, XW,YW,LIA,ILLIB LJA,LJB,LJ, LAX, LAY,
12,J2)

CAL.L MESSAGC(7HLANDEF , 7HRECTAN)

CALL RECTANC1, IMAX, XW,YW,LN(LJ) ,LE(LJ),LS(LJ),LW(LI))

CALL MESSAGA(7HLAMDEF)

WRITE(6,40)

ENDFILE ©

WRITE(8,40)

FORMAT (*MORE LAND? (Y OR N)x)
READ(S,20) Q

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

IF(Q.EQ. 1HY) GOTO 325
CONTINUE

WRITE(6,50)

WRITE(8,50)

FORMAT(x SAVE LAND ON UNIT 10? (Y OR N)x)
READ(S5,20) @

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

IF(Q.EQ. 1HY) 500,600

CONTINUE

WRITE(10) LAX,LAY LIA,1.1B LJA,LJB, LW, LE,LN,LS
ENDFILE 1C

CONTINUE

CALL MESSAGR(7HLANDEF)
RETURN

END

A-16

e e

SUBROUTINE MOVMENT(M,N, JA,JB,X,Y, 1A, 1B,P,XCEN, YCEN,

$ XW, YW, J, ILA, JLA,FLAG, SE.KE,KLA,H, LAX, LAY, LIA,LIB,
s LAN, LAND, LN, LE,LS, LW, INC, CL.LOSE)
c
c POSITION DISTRIBUTION IS MOVED TO ACCOUNT FOR THE PASSAGE OF TIME
c INCORPORATING SPEED AND COURSE UNCERTAINTY AND LAND INTERACTION,
c
LOGICAL FLAG,LAND, LANINT
DIMENSION JA(2,5,9),JB(2,5,9),X(1),Y(1),1A(1),1B(1),
s PC1),XCENC1),YCENC1), XWC1),YW(1),SECT) , H(1),IW(2,1),
s KE(2,5,9),WK(300),RX(200),RY (200},
s 1IR(2,20),XPC(200),YPC(200),XC(200),YC(200),XS(200),YS(200),
$ 1S(2,20),L1A(1),LIBC(1)
REAL LAX(1),LAY(1),LNCT),LECT),LSC1),LW(1), [NC ;]
DATA IR(1,1)/0/ by
CALL MESSAGA(7HMOVMENT) Kz
FLAG=.T. 04
‘ SUB=7HMOVMENT o
j M1=M+1 i
; Ji=0 |
[JAZ=JA(2,M,N)
JB2=JB(2,M,N) 13
’ JA1=JA(I,M,N) 4
j JB1=JB(1,M,N) ;
' DO 1000 NC=JA2, JB2 [
1A2=1A(NC) ¥
1B2=1B(NC) _
1C2=1B2-1A2+1 “
PC=P(NC) 4
DO 900 NP=JA1, JBI1 f
c 3
c GENERATE THE VELOCITY POLYGON WITH RESPECT TO POSITION POLYGON. THE '
c RESULT 1S STOGRED IN XC,YC. .
¢ 1
SENC1=XCEN(NC) -XCEN(NP) "
SENC2:=YCEN(NC) ~YCEN(NP)
SE1=-SE(1+KE(1,M,N)) +XCEN(MP)
SE2=-SE(Z2+KE (), M, N)Y+YCEN(N)
DO 100 1=1A2,IB2
1U=1-~1A2+1 ;
XCC1U)=X(1)+SE1 :
YCUIU)=Y(1)+3E2 i
100 CONTINUE !
c WRITE(G,6)
c WRITE(8,6)
c 6 FORMAT(xSLIN 5*)
c CALL VEC(1,1C2,XC,YC)
IA1=1A(NP)
1B1=1B(NP) 1
ICI=IB1-1AT+1
PP=P(NP)
IF((PP.LT.0.).AND.(PC.LT.0.)) GOTO 900
IF(PP.LT.0.) GOTO S00
{F(PC.LT.0.) GOTO 700
200 CONTINUE
c
c TWO POSITIVE INFORMATION AREAS.
c GENERATE CUM(NP,NC),SEE DOCUMENTATION. RESULLT IS STORED IN XS,YS.
c
WRITE(7,7)
7 FORMAT(xTHE CENTROID POLYGON WITH RESPECT TO THEx
i
r.
.1
A-17 - i
]

O00O0

000000

19

250
30

300

500

529

X N4

. SR - T) it e i i Ol 24 0050 a2,

* POSITION POLYGON IS x)

WRITE(7,8) (XC(I),YC(1),1=1,1C2)

FORMAT(5(G13.6,613.6))

ENDFILE 7

WRITE(G, 19)

WRITE(7,19)

WRITE(8,19)

FORMAT (xCALL NUCUMUN (Y OR N)x)

READ(5,30) Q

WRITE(6,30) Q

WRITE(7,30) @

WRITE(8,30) Q

IF(Q.EQ. 1HN) GDTO 250

CALL MESSAGC(7HPIAAM |, 7HNUCUMUN)

CALL NUCUMUN(NP,NC, 1A, 1B, X, Y, XW,YW,XS,YS, IS, W XCEN,YCEN,
WK, XC,YC,FILLAG, XPC,YPC, IC1, JMAX)

CALL MESSAGA(7HMOVMENT)

GOTO 300

CONT I NUE '

FORMAT (A1) |

CALL MESSAGC(7HPIAAM , 7HCUMUN) X

CALL CUMUNINP,NC, 1A, I1B,X,Y, XW,YW,XS,YS, IS IW,XCEN, YCEN, !
WK, XC,YC,FLAG, RX,RY, IR, JMAX) L

CALL HMESSAGA(7HMOVMENT) 3

GENERATE PIAAM(NP NC)= CUM(NP,NC) U NC(C) U NP(C)=0UTEFR BOUNDARY d-
OF CUM(NP,NC)=CLOCKWISE TURN'NG POLYGON. STORE RESULT IN XPC,YPC 5

IF(.NOT.FILLAG) RETURN

CALLL MESSAGC(7HPIAAM , 7THSELECT)

KAY=-1

CALL SELECT(KAY, JMAX,XS,YS,1S5,XPC,YPC,I1C1)

CALL MESSAGA(7HMOVMENT)

IF(KAY .NE.O) GOTO 300

WRITE(6,15)

WRITE(7,195)

ENDFILE 7

WRITE(8,15)

FORMAT(xERROR IN P1AAM CALCULATIONX)

FLAG= . F.

CALL MESSAGR(7HMOVMENT)

RETURN

CONTINUE

CALLl. CONCLDE(MI,N,JA,JB,X,Y,1A,1B,P,
XCEN,YCEN, J, ILA, JLA, FLAG,SE KE ,KLA,H,LAX, LAY LIA,
LIB,LAN,LAND, LN, LE,LLS,LW, INC,CLOSE, JJ, 1C1, XPC, YPC,
PP,PC,XW, YW, IW,RX,RY, IR, XS _YS, 1S, LANINT)

GOTU 900

CONTINUE

POS!ITION POLYGON IS A NEGATIVE INFORMATION AREA
TRAMSLATE THE NEGATIVE INFOAMATION POS!TION AREA
TO HAVE CENTROID AT ITS VELOCITY CENTROID.

STORE IN XPC,YPC,

DO 525 1=1A1,18B1
Tus1-TAT+1
XPCCIU)=X(1)+SENCI
YPCCIU)=Y(])+SENC2

CONTINUE

CAlLl. MESSAGC(7HNIAAMPO, 7HCUMUN)

A-18

WRITE(7,8) (XPC(1),YPC(1),1=1,1C1)

c ENDFILE 7
CALL CUMUN(NC,NP,1A,I1B,X,Y,XW,YW,XS,YS, IS,
$ IW, XCEN, YCEN, WK, XPC, YPC, t
s FLAG, RX,RY, IR, JMAX) ;
CALL MESSAGA(7HMOVMENT)
Cc
c GENERATE NIAAM(NP,NC)=NP(C) & ~CUM(NP,NC)=INNER BOUNDARY OF
c CUM(NP,NC)=COUNTERCLOCKWISE POLYGON. STORE RESULT IN XPC,YPC.
c
IF(.NOT.FLAG) RETURN i
CALL MESSAGC (7HN!AAMPO, 7HSELECT)
KAY=-2 :
CALL SELECT(KAY, JMAX,XS,YS,1S,XPC,YPC,1C1) g
CALL MESSAGA(7HMOVMENT) K]
c L
c IF KAY=0 NIAAM 1S THE EMPTY SET '
c {d
1F(KAY .EQ.0) GOTO 800 P
CALL CONCLDE(MI1,N,JA,JB,X.Y,1A,18B,P, ‘
$ XCEN,YCEN, J, LA, JLA,FLAG, SE,KE,KLA, H, LAX, LAY, LIA,LIB, }
$ LAN, LAND,LN,LE,LS,LW, INC,CLBSE, JJ, IC1,XPC,YPC,PP,PC, XW, g
$ YW, %, RX,RY, IR, XS$,¥S, 1S, LANINT) I
IF(.NOT.FLAG) RETURN i
GOTO 900 ‘
700 CONTINUE (
c
c CENTROID POLYGON IS A NEGATIVE INFORMATION AREA &
C PR
CALL MESSAGC(7HNIAAMCE, 7HCUMUN) f?
CALL CUMUN(NP,NC, 1A, IB,X,Y,XW, YW, XS,¥S, IS, §
s 1W, XCEN, YCEN, WK, XC, YC, FLAG,
$ RX,RY, IR, JMAX)
CALL MESSAGA(7HMOVMENT)
c
c GENERATE NIAAM(NP,NC)=NC(C) & ~CUM(NP,NC)=[NNER BOUNDARY OF
c CUM(NP, NC) =COUNTERCLOCKWISE POLYGON. STORE RESULT IN XPC,YPC.
c
IF(.NOT FLAG) RETURN
CALL MESSAGC(7HN!AAMCE, 7HSELECT)
KAY=-2
CALL SELECT(KAY, JMAX,XS,YS, IS, XPC,YPC,IC1)
CALL MESSAGA(7HMOVMENT)
c
c IF KAY=0 NIAAM IS THE EMPTY SET
c
[F(KAY.EQ.0) GOTO 900
CALL. CONCLDE(M1,N,JA,JB,X,Y,1A,1B,P,
$ XCEN,YCEN, J, ILA, JLA,FLAG, SE,KE,KLA, H, LAX, LAY, LIA,LIB,
s LAN, LAND, LN, LE,LS, LW, INC,CILOSE, JJ, IC1, XPC, YPC, PP, PC, XW,
s YW, IW,RX,RY, IR, XS,Y¥S, [S, LANINT)
IF(.NOT.FLAG) RETURN
800 CONT [NUE
1000 CONT [NUE

CALL MESSAGC(7HMOVMENT, 7HUPDATE)

CALL UPDATE(M1,N,JA,JB,X,Y, 1A, 1B,P,XCEN, YCEN,
s J,1LA,JLA,SE KE,H,KLA,FLAG, 1)

CALL. MESSAGA(7HMOVMENT)

IF(.NOT.FLAG) RETURN

CALL MESSAGR(7HMOVMENT)

RETURN

A-19

=" T N N PP S PUN NI LONE Y, T . VUSNPE AR

F—_——-———-—'——"’

(e Xs XoNel

[y Xe X3}

O000O0O00OO0O0O0

ano

500

X X

L X N X

END

SUBROUTINE CONCLDE(Mt,N,JA,JB,X,Y,IA,IB,P,XCEN, YCEN,
J,ILA, JLA,FLAG, SE KE,KLA,H, LAX, LAY, ,LIA,LIB,LAN,LAND,LN,
LE,LS,LW,INC,ClLOSE. JJ,IC1, XPC,YPC,PP,PC,XW, YW, IW,RX,RY,
IR,XS,¥YS, IS, LANINT)

CONCLDE STORES THE RESULTING POSITION POLYGON TAKING ACCOUNT
OF LAND INTERACTION.

LOGICAL FLAG,LAND,LANINT

DIMENSION JA(2,5,9),JB(2,5,9),X(1),Y(1),1AC1),IB(1),P(1),
ACEN(1) ,YCEN(T) , XW(1) , YWY ,HO1) , IW(2,1),8E(1),
KE(2,5,9),WK(1),RX(1),RY(1),IR(2,1),XPC(1),YPC(1),

XS(1),YS(1),18(2,1).XW0(1400),YWO(1400),
NUM(2,200) ,LTIAC1),LIB(1)

REAL LAXC1),LAY (1) ,LNC1),LEC1),LS(1),LW(1),INC
INTEGER REM(2,20), INUM(50)
DATA REM{1,1),NUMC(1, 1) /2x0/

CALL MESSAGA (7HCONCL.DE)
IFC.NOT.LAND) GOTO 900
CALL MESSAGC({7HCONCLDE, 7HPOSINT)

LAN=LJB(1,1,1)

CALL POSINT(XPC,YPC,IC1,LAX,LAY,LIA,LIB,LAN,LN,LE,LS,LW,XW
LYW, IW, RX,RY, IR, XS,YS, 1S, LANINT, INC, CLOSE, FLAG, XWO, YWO,
NUM, REM, I REM, INUM, PP, PC)

CALL MESSAGA(7HCONCLDE)

IFC.NGT.FLAG) RETURN

WHEN (XPC,YPC) INTERSECTS SOME LAND MASS, (XWO, YWO)
CONTAINS POSITION POLYGONS DETERMINED BY (XPC,YPC) AND

THE LAND MASSES (LAX,LAY). THE COMTENTS OF (XPC,YPC)

ARE UNCHANGED. IREM IS THE INDEX OF THE OPTIMAL SET OF
REMAITNDER POLYGONS. INUMCIREM) IS THE INDEX OF THE LARGEST
REMAINDER POLYGON IN SET IREM. THE VARIOUS SETS OF
REMAINDER POLYGONS ARE SPECIFIED BY (XWO,YWO,NUM,REM).

IF LANINT=. FALSE., THEN (XPC,YPC) INTERSECTS NO LAND MASS

IF(.NOGT LANINT) GGTO 900

IF((PP.GT.0.).AND. (PC.GT.0.)) GOTO 800
AR=0.

THIS CODE HANDLES NEGATIVE INFORMATION AREAS.

J1=REM(1,1)
J2=REM(2, 1)

DO 600 JO=1,J2
IS1=NUM(1,J1+J0)
IC1=NUM(2, J1+J0)

DO S00 1=1,]cC1
XPC(1)=ROU(XWO(IST+1))
YPC(1)=ROU(YWO(IST1+1))
CONTINUE

IC1=1C1+1

XPC(iC1)=XPC(1)

YPCUIC1)=YPC(1)

WRITE(7,60) JO, IREM

WRITE(7,8) (XPC(l),YPC(l),1=1,1C1)
ENDFILE 7

WRITE(6,40)

A-20

Citiinn o g e X e,

[eXe N

600

700

800

60

860
=le]o}

40

WRITE(8,40)

CALL VEC(1,1C1,XPC,YPC)

JJ=JdJ+1

CALL PUT(1,M1,N,JJ,IC1,XPC,YPC,1A,1B,JA,JB,J,X,Y,ILA,JLA)

A=AREA (XWO, YWO, NUM, J1+JO)

AR=AR+A

P(J)=PPxPCxA

1F(JO.EQ. 1) JJi1=J

IF(JB.EQ.J2) JJ2=)

CONT I NUE

DO 700 JO=JJ1,JJ2

P(JO)=P(JO) /AR

CONTINUE

CALL MESSAGR(7HCONCLDE)

RETURN

CONT I NUE

WRITE(7,60) INUM(IREM), IREM

FORMAT (xPOLYGON x,[3,x IN THE OPTIMAL REMAINDER SET x,13)

JO=REMC1, IREM)4 INUM(IREM)

IS1=NUM(1,J0)

1C1=NUM(2, JO)

DO 860 I=1,IC1
XPC(1)=ROU(XWO(1S1+1))
YPC(1)=ROU(YWO(IST1+]))

CONT I NUE

CONT I NUE

IC1=IC1+1

XPC(I1C1)=XPC(1)

YPC(IC1)=YPC(1)

WRITE(7,8) (XPC(1),YPC(1),}=1,1C1)

FORMAT(5(G13.6.613.6))

ENDFILE 7

WRITE(6,40)

WRITE(8,40)

FORMAT(xSLIN 1x)

CALL VEC(1,1C1,XPC,YPC)

JJ=JJ+1

CALL PUT(1,M1,N,JJ,1C1,XPC,YPC,1A,18,JA,JUB,J,X,Y,ILA,JLA)

P(J)=PPxPC

CALL MESSAGR(7HCONCLDE)

RETURN

END

LOGICAL FUNCTION COLL (PARX,PARY)

COl.L 1S TRUE WHENM POINTS IN PARX,PARY DO MOT FORM A PARALLFI.OGRAM.

DIMENSION PARX(4),PARY (4)
CALL MESSAGA (7HCOLL)
coLL=.F.

E=., 0001

EP=1,

DO 50 1=1,3

=1+

DO 40 J=11,4

IF((ABS(PARKX (1)} -PARX(J)).GT.EP).OR. (ABS(PARY(1)-PARY(J)).GT.EP))
$ GOTo 39

COLL=.T.

CALL MESSAGR(7HCOLL)
RETURN

39 CONTINUE
40 CONTINUE

A-21

L L

-

50 CONTINUE
A1=PARY (2)-PARY (1)
B1=PARX(2) -PARX(1)
C1=(A1xPARX(1))-(PARY(1)xB1)
A2=PARY (3) -PARY (4)
B2=PARX(3) -PARX(4)
C2=(A2xPARX(4)) - (PARY (4)xB2)
IF(ABS(A2).LT.E) 100,200

100 CONTINUE
IF(ABS((C1/B1)-(C2/B2)).LT.EP) COLL=.T.
CALL MESSAGR(7HCOL.L)

g RETURN
200 CONTINUE
IF(ABS((C1/A1)-(C2/A2)) . LLT.EP) COLL=.T,
CALL MESSAGR(7HCOLL)
RETURN
END
SUBROUTINE CUMUN(NGONT,NGON2, 1A, 1B, X, Y, XW, YW, XS,
$ YS, 1S, IW,XCEN, YCEN, WK, PGX, PGY , FLAG,
$ RX,RY, IR, JMAX)
c
c GIVEN POLYGONS NGON1 AND NGON2,GENERATE CUM(NGONT, NGON2).
c THIS 1S THE SET RESULTING FROM MOVING NGON1 ARGUMND THE VERTICES
c OF NGON2. FOR EACH J EVALUATE NGON1 AT VERTEX J OF NGON2,CALL
c 1T NGONI(J). UNION TO NGON1(J) ALL PARALLELOGRAMS GENERATED
c BY NGON1(J) AND NGON1(J+1). TAKE THE UNION OF THIS RESULT OVER
c ALL J. CUM(NGON1,NGON2) ACTUALLY EQUALS THE UNION GVER ALL J
c OF ALL PARALLELOGRAMS GENERATED BY NGONT(J) AND NGON1(J+1).
c BUT SOMETIMES WHEN JUST PARALILELLOGRAM UNIONS WERE USED,
c COMPUTATIONAL PROBLEMS CAUSED MORE THAN ONE FIGURE TO RESULT
c AT INCONVENIENT POINTS. THIS PROBLEM WAS ALLEVIATED BY
c INCORPORATING NGON1(J) EXPLICITLY IN THE CALCULATIONS.
c XS,YS CONTAINS THE RESULT CUM(NGON1,NGON2) .
c
LOGICAL COLL,FLAG, FLAGI
DIMENSION X(1),Y(1), TACT), IBC1), XW(1), YW1, TW(2,1),XS(1), :
$ YS(1),PX(50),PY(50),0X(50),QY(50),WK(1),PGX(1),PGY(1), |
$ PARX(4),PARY(4),RX(1),RY(1),18(2,1),1R(2,1), ;
$ XCEN(1),YCEN(1) :
c
c PGX,PGY CONTAINS X AND Y COORDINATES OF NGON2.M2 IS THE NUMBER OF
c DIFFERENT VERTICES OF NGON2
c PX,PY CONTAINS NGON1 AT THE J VERTEX OF NGON2
c QX,QY CONTAINS NGON! AT THE J+1 VERTEX OF NGON2
c PARX, PARY CONTAIN THE VERTICES Of PARALLOLOGRAM I,J
c
CALL MESSAGA(7HCUMUN) .
TAT=1A(NGONT)
M1=IB(NGONT)-1A1
M11=M1+1
M2= 1B (NGON2) - 1 A(NGON2)
M22=M2+1
M21=M2-1
SUB = 7HCUMUN
XC1=-XCEN(NGON) +PGX (1)
YC1=-YCEN(NGON1)+PGY (1)
DO 1500 J=1,M2
XC2z -ACEN(NGON1) +PGX (J+1)
YC2=-YCEN(NGON1) +PGY (J+1)
c
c EVALUATE AND SAVE NGON1(J) AND NGON1(J+1) !

A-22

IF(J.EQ.1) 100,200
100 DO 120 1=1, M
IA11=1AT+1-1
PX(I)=zROU(X(TATT)+XC1)
PY(1)=ROUCY(TAT11)+YC1)
120 CONTINUE
PX(MI1)=PX(1)
PY(M11)=PY (1)
GOTO 400
200 CONTINUE
DO 220 1=1,MI1
PX(1)=QX(1)
PY(1)=QY (1)
220 CONTINUE
400 CONT I NUE
DO 500 =1, M
lAT1=1AT+] -1
QX(1)=ROU(X(1A11)+XC2)
QY{(1)=ROUCY(IA11)+YC2)
500 CONTINUE
AX(M11)=QX(1)
QY (M1 1)=QY (1)
800 CONTINUE
D0 1000 1=1, M1
IF(I1.EQ.1) 820, 840
820 CONTINUE
IW1=M1
DO 830 K=1, 1w}
XW(K)=PX(K)
YW(K)=PY(K)
830 CONTINUE
840 CONTINUE

SR B3 SN

%

GENERATE PARALLELOGRAM |

o000

PARX(1)=PX (1)

PARY (1)=PY (1)

PARX(2)=PX(1+1)

PARY (2)=PY(I+1)

PARX(3)=QX(141)

PARY (3)=QY(1+1)

PARX(4)=QX (1)

PARY (4)=QY ({)

CALL MESSAGC(7HCUMUN | 7HICOLL)
IF(COLL (PARX,PARY)) GOTO 1000

GENERATE UNION OF PARALLELOGRAMS(I1,J), 1=1 M1, = XW,YW

Qoo

CALL MESSAGC(7HCUMUN |, 7HPREIUVU 1)
CALL PREIU(XW,YW, IW!1 PARX,PARY ,4,1,18,XS,YS,SuB,FLAG,
$ FLAG!, JMAX)
CALL MESSAGA(7HCUMUN)
IF(NOT.FLAG) RETURN g
1000 CONTINUE
1200 CONTINUE

UNION XW,¥YW WITH PREVIOUS RESULTS STORE RESULT IN XS,YS,AND (WHEN
RESULT 1S ONE POLYGON) IN RX,RY,

e XeXeNel

IF(J.EQ.1) 1300, 1400 1

A-23

(e Xe N e/

OOO0O0

1300

1325

1400

1500

CONTINUE
IR1=IR(Z, 1)=IW1
DO 1325 K=1,1IR1
RX(K)=XW(K)
RY (K) =YW(K)
CONTINUE
GOTO 1500
CONTINUE
CALL MESSAGC (7HCUMUN
CALL PREIU(RX,RY,IR)
CALL MESSAGA(7HCUMUN

WHEN
WHEN CUM SURROUNDS A
IF(.NOT.FLAG) RETURN
CONTINUE
CALL MESSAGR(7HCUMUN
RETURN
END

KXW, YW, IW1,1,18,X8,YS,SUB, FLAG, FLAG1, JMAX)

J=M2,RESULT COULD BE A POLYGON AND A HOLE.

T T

, 7HPREIU 3)

Y

)

|

THIS 1S THE CASE

NONEMPTY AREA. THEN FIND RESULT IN XS,YS.

)

SUBROUTINE PREITU(XW, YW, IW1,PX,PY M1 ,KL,1S,XS,YS,
$ SUB, FLAG,FLAG1, JMAX)

LOGICAL FLAG,FLAGH
- DIMENSION XW(1) ,YW(1),PX(1),PY(1),XS(1),YS(1),WK(300),
$ Is(2,1)

100

15

25

30

200

PREIU CALLS JUCALC. TESTS JMAX FOR [UCALC AND CALLING ROUTINE ERRORS.

THE [UCALC RESULT IS TRANSFERED TO XW, YW.

IF ERROR THEN AN APPROPR!ATE MESSAGE IS WRITTEN.

SUB CONTAINS THE NAME OF CALLING ROUTINE.

CALI. MESSAGA(7HPREIU)

FLAG= . T.

FLAGI=.T.

WRITE(7,30) (XWC1),YW(L1),1=1,1W1)

WRITE(?7,30) (PX(1),PY(1),1=1,M1) .
CALL MESSAGC(7HPREIU ,7HIUCALC)

CALL
CALL MESSAGA(7HPREIU
IF(JMAX) 100,200, 300
CONT I NUE

WRITE(6,15) JMAX, suB
WRITE(7,195) JMAX,SuB
ENDFILE 7
FORMAT(x1UCALC ERROR x
WRITE(6, 25)
WRITE(8, 25)
FORMAT(x$SLIN 7x)
RUREREAR S
XW(IWiT)=XW(l)
YWUIW11)=YW()
M11=M1+1

PX(M11)=PX(1)
PY(M11)=PY (1)
FORMAT(S5(G13.5,613.5))
CALL VEC(1,I1W11,XW,YW)
CALL VEC(1,M11,PX,PY)
FLAG= .F.

CALL MESSAGR(7HPRE!V
RETURN

CONT I NUE

WRITE(6,40) SUB, JMAX
WRITE(7,40) SUB, JMAX

TUCALC(XW, YW, IWl,PX,PY,M1 KL, WK, 300, JMAX,1S,20,XS,YS, 200)

)

,13,%x OCCURS IN x,A7)

)

A=24

i 40 FORMAT(A7,xRESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT «x,
$ xEXISTS. x,13)

c ENDFILE 7
. c
] c RESULT 1S THE SAME AS ORIGINAL DATA OR NO RESUL.T EXISTS
c
FLAG1=.F,
CALL MESSAGR(7HPREIU)
RETURN
300 CONTINUE
c WRITE(6,50) JMAX
WRITE(7,50) JMAX
c ENDFILE 7

50 FORMAT(xPREIU CALLS RECOVER x,]3)
CALL RECOVER(JMAX,XS,YS,I1S,XW,YW, IW1,SUB)
CALL MESSAGA(7HPREIVU)
IF(JMAX.EQ.Q) FLAG1=.F.
CALL MESSAGR(7HPREIU
RETURN
END
SUBROUTINE SELECT(K, JMAX,XS,YS,1S,XPC,YPC,IC1)

SELECT EXTRACTS THE APPROPRIATE POLYGON FROM CUM(NP,NC),

STORES IT IN (XPC,YPC).

IF K=-1 THE OUTER BOUNDARY OF CUM 1S SELECTED,THIS IS A CLOCKWISE
POLYGON AND PlAAM AND AREA.GT.O. :

IF K=-2 THE INNER BOUNDARY,IF 1T EXISTS,1S SELLECTED,TH!S IS A COUNTER-
CLOCKWISE POLYGON AND NIAAM AND AREA.LT.O.

K=0 IF NIAAM DOES NOT EXIST.

[z XeXeNeNeNeNs XN ol

DIMENSION XS(1),YS(1),1S(2,1),XPC(1),YPC(1)
CALL MESSAGA(7HSELECT)
IF(JMAX.EQ.0) STOP 4
IF(JMAX.EQ.1) 100,500
100 IF(K.EQ.-1) 200,300
200 CONTINUE
IC1=1s(2,1)
DO 225 1=1,1C1
XPC(1)=XS(1])
YPC(1)=YS(])
225 CONTINUE
WRITE(7,10)
10 FORMAT(xSELECT CHOOSES THE POLYGON DEFINED BY x)
WRITE(7,18) (XPC(1),YPC(1),1=1,1C1)
15 FORMAT(5(613.5,G613.5))
[ENOFILE 7
CALL MESSAGR(7HSELECT)
RETURN
300 CONTINUE
K=0
CALL MESSAGR(7HSELECT)
RETURN
500 CONTINUE
MAX = JMAX
DO 600 J=1,MAX

CALCULLATE AREA OF POLYGOM [N [UCALC OUTPUT FORMAT.

o000

CALL MESSAGC(?7HSELECT , 7HAREA)
AzAREA(XS,YS,18,J)

CALL MESSAGA(7HSELECT)

560

600

o000

IF((K.EQ.-1) AND.(A.LT.0.)) GOTO 600
IF((K.EQ.-2) .AND.(A.GT.0.)) GOTO 600
100=1S(1,J)+1
IC1=18(2,J)
IOM=1S(1,J)+ICY
DO 560 1=100, |0M
1U=1-100+1
XPCCIU) =XS (1)
YPC(IU)=YS(1])
CONTINUE
WRITE(7,10)
WRITE(7,15) (XPC(1),YPC(I),1=1,1C1)
ENDFILE 7
CALL MESSAGR(7HSELECT)
RETURN
CONT I NUE
K=0
CALL MESSAGR(7HSELECT)
RETURN
END
SUBROUTINE UPDATE(M1,N,JA,JB,X,Y,1A,1B,P,XCEN, YCEN,
$ J,ILA,JLA,SE,KE,H,KLA,FLAG,L)

UPDATE CALCULATES STATISTICS FOR THE NEW DISTRIBUTION

LOGICAL FLAG

DIMENSION JA(2,5,9),JB(2,5,9) ,X(1),Y(1),1A(1),IB(1),P(1),
$ XCENCT1),YCEN(T),SE(1),KE(2,5,9),H(1)

CALL MESSAGA(7HUPDATE)

FLAG=. T,

JI=JA(L, M1, N)

J2=JB(L, M, N)

CALL NORM(J1,J2,P)

CALL MOM(J1,J2,1A,18,X,Y,P,H,EX,EY,EXX,EYY,EXY,XCEN, YCEN)

IFC(EXX.GT.0.) . AND. (EYY.GT.0.)) GOTO 100

WRITE(6,10)

WRITE(7,10)

ENDFILE 7

FORMAT (xNEGATIVE VARIANCE WAS COMPUTED I[N UPDATEx/)
FLAG=.F.

CALL MESSAGR(7HUPDATE)

RETURN

100 CONTINUE

CALL EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)

CALL SAVE(L,M! N ,EX,EY,R1,R2,D1,02,EXX,EYY,EXY,SE,KE, KLA)
CALL MESSAGR(7HUPDATE)

RETURN

END

REAL FUNCTION ROU(X)

ROU=AINT(X+0.5)

END

SUBROUTINE RECOVER(JMAX,XS,YS, IS, XW, YW, IW!, SUB)

REAL 1E

DIMENSION XS(1),YS(1),XW(1),YW(1), XR(200),YR(200),1S(2,1),
$ |IR(2,20)

COINCIDENT VERTICES AND ODEGENERATE POLYGONS ARE REMOVED.

CALL MESSAGA.(7HRECOVER)
IR1=0

IR(1, H=IR1

MAX = JMAX

Mt A A

PR VR S o

1E=1.

DO 600 J=1, JMAX
1S1=18(1,J)

182=18(2,J)

K1=1
R=XR(IR1+1)=ROU(XS(181+1))
S=YR(IR1+1)=ROU(YS(1S1+1))
DO 450 K=2,182
R1=ROU(XS(IS1+K))}
S1=ROU(YS(IS1+K))
IF((ABS(R-R1).LE.IE).AND. (sBS(S-S1).LE.1E))

$ GOTOC 450

450

K1=K1+1

R=XR(IR1+K1) =R}

S=YR(IR1+K1)=81

CONTINUE

R1=XR(IR1+1)

SI=YR(IR1+1)

IF((ABS(R-R1).LE.1E).AND. (ABS(S-S1).LE.1E))

$ Ki=K1-1

500

550

600

650

8675

15 FORMAT(A7,x RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT x,

IF(K1.LE.2) 500,550
CONTINUE

MAX=MAX -1

GOTO 600

CONT I NUE

IR(2, J)=K1
IR1=IR(1,J+1)=1IR(1, J)+K1
CONTINUE

JMAX=MAX

IF(JMAX.EQ.1) 650,700
CONTINUE

IWI1=1R(2,1)

DO 675 [=1,1W1
XW{L)=XR(1)

YW(I)=YR(])

CONTINUE

WRITE(7,10) (XW(L),YW(l),I=1,1W1)
ENDFILE 7
FORMAT(5(G13.5,G13.%5))
CALL MESSAGR(7HRECOVER)
RETURN

CONTINUE

IF(JMAX.EQ.0) 725,735
CONTINUE

WRITE(7,15) SUB, JMAX

$ x EXISTS. x,13)
ENDFILE 7
RETURN

735 CONTINUE

WRITE(6,20) SUB, JMAX
WRITE(7,20) SUB, JMAX
ENDFILE 7

20 FORMAT(A7,x ERRCR x,13)

DO 750 J=1, JMAX

IR1=IR(1,J)

IR2=IR(2,J)

WRITE(7,10) (XRCOIRI+1),YR(IRI+1),1=1,IR2)

ENDFILE 7

750 CONTINUE

CALL MESSAGC(7HRECOVER, 7HSELECT)

A-27

RPN PPN XRP Mgt &

e

PR

O T, SR O NG Y YTy

PRGN L1 T3 O

3

T 1 o e g St

CALL SELECT(-1,JMAX,XR,YR, IR, XW,YW, IW1)
CALL MESSAGA(7HRECOVER)
CALL MESSAGR(7HRECOVER)

RETURN
END
SUBROUTINE MESSAGR(NAME)
c
c MESSAGR 1S CALLED MANY PLACES. IT LEAVES RETURN MESSAGES
c
c WRITE(6,10) NAME
c ENDFILE 6
WRITE(7,10) NAME
c ENDFILE 7 4
c WRITE(8,10) NAME J
10 FORMAT(A7,x RETURNS x) k
RETURN 4
END b
i

¥
i
:
)
;
.

e

et

i
A-28 ?

[+ XeNeNeXsNeNel

00 00000

00 00000

0000

50

20

10

SUBROUTINE CENTRD(11,12,X,Y,A,AX,AY,AXX AYY,6 AXY)

CENTRD CALCULATES THE AREA,AND FIRST MOMENTS AND VALUES
PROPORTIONAL TO THE SECOND MOMENTS OF A POLYGON

WHOSE DISTINCT VERTICES ARE STORED IN JUCALC OUTPUT FORMAT
IN XC1),Y(l),I=11,12.

CENTRD [S CALLED BY GOLDSEC AND MOM.

DIMENSION X(1),Y(1)
CALL MESSAGA(7HCENTRD)
l122=12-2
AzAX=AY=AXX=AYY=AXY=0.
DO S50 1=11,122
BX=X(I+1)-X(11)
BY=Y(1+1)-Y(11)
CX=X(1+42)-X(11)
cy=y(1+2)-y(11)
A1=0.5x(CXxBY-BXxCY)
A=A+Al
XI=X(11)+(BX+CX) /3.
YI=Y(I1)+(BY+CY)/3.
AX=AX+AT xX1
AY=AY+AlxY]
AXX=AXX+AT x (X] x X1 +(BXxBX-BX*xCX+CXxCX)/18.)
AYY=AYY+AI x (Y1 xY 1 +(BY®BY-BYxCY+CY*CY)/18.)
AXY=AXY+AI« (X1 *Y] +(BX*xBY-0. 5% (BX*xCY+CXxBY)+CX*CY)/18.)
CONTINUE
WRITE(7,20) A,AX,AY,AXX, AYY K AXY
FORMAT(xTHE OUTPUT OF CENTRD IS x,/(5G15.5))
CALL MESSAGR(7HCENTRD)
RETURN
END
SUBROUTINE MESSAGA (NAME)

MESSAGA [S CALLED MANY PLACES. IT ILEAVES ANSWER MESSAGES.

WRITE(6, 10) NAME

ENDFILE ©

WRITE(7,10) NAME

ENDFILE 7

WRITE(8,10) NAME

FORMAT (A7, x ANSWERS x)

RETURN

END

SUBROUTINE MESSAGC(NAME!,NAME2)

MESSAGC IS CAI.LED MANY PLACES. |T LEAVES CALL MESSAGES.

WRITE(6,10) NAME1,6 NAME2

ENDFILE 6
WRITE(7,10) NAME1Y,NAME2
ENDFILE 7

WRITE(8,10) NAME1, NAME2

FORMAT (A7, x CALLS x,A7)

RETURN

END

REAIL FUNCTION NUSCALE(SCALE, INC)

NUSCALE IS CALLED BY GOLDSEC.
NUSCALE USES SCALE AND INC TO GENERATE THE NEXT TERM IN THE SEQUENCE

A-29

s == ey

k)

|
|

REAL INC
NUSCAILE=SCALE+INC
RETURN
END
SUBROUTINE RECTAN(I1,12,X,Y,N,E, S, W)
C
c RECTAN DETERMINES A RECTANGLE CIRCUMSCRIBING P=(11,12,X,Y) AND STORES
c THE EXTREME X COORDINATES IM W (=WEST) AND E (=EAST) AND THE EXTREME
c Y COORDINATES IN N (=NORTH) AND S (=SOUTH).
c (XC1),¥(1),1=11,12) ARE DISTINCT VERTICES OF P
[+ RECTAN 1S CALLED BY LANDEF, POSINT, AND REMAIN.
REAL W,E,N,S
DIMENSION X(1),Y(1)
CALL MESSAGA(7HRECTAN)
WRITE(7 12X (X(1),Y(1),1=11,12)
Cc ENDFILE 7
12 FORMAT (x INPUT TO RECTANx, /5(G13.6,613.6))
EP=0.0001
W=E=X(]1)
N=S=Y(11)
I11=114+
DO 1000 1=111,12
PX=X(1)
PY=Y (1)

IF(PX.LE.W-EP) W=PX
IF(PX.GE.E+EP) E=PX
IF(PY.LE.S-EP) S=PY
IF(PY.GE.N+EP) N=PY
1000 CONTINUE
WRITE(8,15) N,E,S, W
WRITE(6,15) N,E,S, W
ENDFILE 6
WRITE(7,15) N,E,S, W
ENDFILE 7
15 FORMAT (xNORTH=% ,615.5, xEAST=x,615.5, xSOUTH=x ,G15. 5, *WEST=x,
$ G15.5)
CALL MESSAGR(7HRECTAN)
RETURN
END
LOGICAL FIUNCTION MINIMAX(N E,S W,LN,LE,LS,LW)

O 000

MINIMAX DETERMINES IF THE RECTANGILES GIVEN BY (W.N,E,S) AND
(LW,LN,LE,LS) OVERLAP. IT IS USED TO PRESCREEN POSITION POLYGONS AND
LAND MASSES. MINIMAX = . T. 1F THERE IS NO OVERLAP, = .F. OTHERWISE.
THIS TEST 1S FROM G11.01,W.K.,P.158; EXCEPT IF THE ONLY OVERLAP BCCURS
BETWEEN BOUNDARIES OF THE RECTANGLES, MINIMAX= . T.

MINIMAX IS CALLED BY POSINT, REMAIN, MOVECEN, NEWCEN.

00000000

REAL W,E,N,S,LW,LE,LN,LS

CALL MESSAGA(7HMINIMAX)

MINIMAX=.F .

EP=0.01

IF((E.LE.LW+EP) .OR. (LE.LE.W+EP) . GR. (N.LE.LS+EP) .OR. (LN.LE S+EP))

s MINIMAX=. TRUE.

WRITE(6,20) MINIMAX

ENDFILE 6 ¥

WRITE(7,20) MINIMAX

ENDFILE 7

WRITE(8,20) MINIMAX 4
20 FORMAT(*MINIMAX=x,L3)

CALI. MESSAGR(7HMINIMAX) i3

o0 00

A-30 i

|
f
_;
I
|

00000

aooo oo [XeXel 000

[eXeXeXel

100

300

RETURN

END

SUBROUTINE POSINT(XPC,YPC,IC),LAX,LAY,LIA,LIB,LAN,LN,LE,LS,LW,
XW, YW, IW,RX,RY, IR, XS,YS, 1S, LANINT, INC, CLOSE, FLAG, X'WO, YWO, NUM,
REM, | REM, I NUM, PC, PP)

POSINT, GIVEN A POSITION POLYGON AND LAND MASSES, DETERMINES THE
POLYGON(S) WHICH CONSERVE AREA YET INTERSECT NO LAND.
POSINT 1S CALLED BY CONCLDE.

DIMENSION LIACT),LIB(1) , XPC(1),YPC(1),XW(1),YW(1),
IW(2,1),RXC1),RY(1),IR(2,1),XS(1),YS(1),18(2,1),WK(300),
XWOC1),YWO(1) ,NUM(2,1),INUM(1),AREAS(50)

INTEGER REM(2,1)

REAL LAX(1),LAY(T) , LW, LECT) ,LNCT) ,LSC(T),INC,NORTH, EAST, SOUTH,
WEST

LOGICAL MINIMAX,FLAG,FLAG1, LANINT

XPC,YPC,IC1 CONTAINS THE CURRENT POSITION POLYGON

CALL MESSAGA(7HPOSINT)
CALL MESSAGC(7HPOSINT , 7HRECTAN)

DETERMINE CIRCUMSCRIBING RECTANGLE OF XPC,YPC

CALL. RECTAN(1,1C1,XPC,YPC,NORTH,EAST, SOUTH,WEST)
CALL MESSAGA(7HPOSINT)

LAN=LJB(1,1,1)
FLAG1=.T.
LANINT=.T.

DO 1000 J=1,LAN

TEST FOR OVERLAP OF CIRCUMSCRIBING RECTANGLE GF (XPC,YPC) AND
CIRCUMSECRIBING RECTANGLE OF (LAX(1),LAY(1)) 1=LIACI),LIB(J).

CALL MESSAGC(7HPOSINT , 7HMINIMAX)
IF(MINIMAX(NORTH,EAST, SOUTH,WEST,LN(J) ,LE(J) ,LS(J),LW(J)))

GUTO 900
TEST FOR OVERLAP OF (XPC,YPC) AND POSSIBLE (LAX{()1),LAY(])) I=LIA(Y),
Ligcdy .
I1=LIACD)
12=L1B(J)-1
DO 100 IN=11,12
I=IN-11#1
XW(I)=LAXCIN)
YW(OL)=LAY(IN)
CONTINUE

IW1=12-11+1

CALL MESSAGC(7HPOSINT , 7HIUCALC)

CALL TUCALCIXW, YW, W1 XPC,YPC,1C1,2 WK,300,JMAX,1S,20,XS,YS,
200)

CALL MESSAGA(7HPOSINT)

IFCJMAX LY. O0) 300,400

CONT I NUE

WRITE(8,40) J,K JMAX

WRITE(6,40) J, JMAX

ENDFILE 6

A-31

na

N

FEPOR N

r.‘ ‘._.;,
X

e g

SRR, SR~ * oA TS

: WRITE(7,40) J, JMAX
3 c ENDFILE 7

40 FORMAT(xIUCALC ERROR IN POSINT. J= x,I13,x JMAX= x,13)
STOP 15
400 CONTINUE
c WRITE(8,45) J, JMAX
c WRITE(6,45) J, JMAX
c ENDFILE 6
WRITE(7,45) J, JMAX
c ENDFILE 7
45 FORMAT (xJ= x,13,xJMAX= x,13)
c
Cc JMAX.EQ.O0 WHEN THE INTERSECTION IS EMPTY, OR THE INPUT POLYGONS TO
c IUCALC ARE IDENTICAL.. THE ASSUMPTION HERE 1S THAT THE INPUT
c POLYGONS ARE NEVER IDENTICAL.
Cc
IF(JMAX.EQ.0) GOTO 900
[
c A NONEMPTY INTERSECTION RESULTS.
Cc (XWO,YWO) CONTAINS THE POSITON POLYGONS DETERMINED BY THE INTERACTION
Cc OF (XPC,YPC) WITH THE LAND MASSES (LAX,LAY). IREM IS THE INDEX OF THE
[OPTIMAL SET OF REMAINDER POLYGONS. MAXPOL |S THE NUMBER IN THE SET.
c

IF(PPxPC.GT.0.) 600,700
600 CONTINUE

CALL MESSAGC(7HPOSINT , 7HGOLDSEC)

CALL GOLDSEC(XPC,YPC,IC1,LAX,LAY,LIA,LIB,LAN,XW,YW,IW,XS,YS,
$ IS,RX,RY, IR, INC,LN,LE,LS,LW, CLOSE,FLAG, XW3, YWO, MUM, REM,
$ IREM, INUM, AREAS)

CALL MESSAGA(7HPOSINT)

CALI. MESSAGR(7HPOSINT)

RETURN

700 CONTINUE

CALL MESSAGC(7HPOSINT , 7HREMAIN)

CALI. REMAIN(XS,YS,1S,LAX,LAY LIA,LIB,LAN,XW, YW, IW,
$ RX,RY,IR,LN,LE,LS,LW,1.,XPC,YPC,1C1,0.,0.,XW0, YWO,
$ NUM, REM, 1, AREAS, I NUM)

CALL MESSAGA(7HPOSINT)

IREM=1

CALL MESSAGR(7HPOSINT)

RETURN

900 CONTINUE
1000 CONT i NUE

XPC,YPC INTERSECTS NO LAND MASS.

LANINT=.F.
WRITE(8,60)
WRITE(6,60)
ENDFILE 6
WRITE(7,60)
ENDFILE 7
60 FORMAT (xXPC,YPC INTERSECTS NO LAND MASS.x»)
CALL MESSAGR(7HPOSINT)
RETURN
END
SUBROUTINE NUCUMUN(NGON1,NGON2,1A,I1B,X,Y,
$ XW,YW,XS,YS,IS,IW,XCEN, YCEN, WK,
$ PGX,PGBY,FLAG,RX,RY,IR1,JMAX)

O 000 000

(e X o]

GIVEN NGON1 AND NGON2, TWO POLYGONS REPRESENTING POSITIVE |INFORMATION,

A-32

STORE PSR, OSSN S

o000 QOOOO00 [+ XeNeNsNoNoNeNoNeR el

o000 O

[eXeNeXel

10

GENERATE PlAAM. START WITH A VERTEX KNOWN TGO BE ON BOUNDARY OF PlAAM,
IN THIS CASE THE MAST NORTH VERTX OF NGON!1 EVALUATED AT THE MOST
NORTH VERTEX OF NGON2. THE NEXT VERTEX ON THE BOUNDARY OF PIAAM IS
USUALLY EITHER THE NEXT VERTEX OF NGOM! EVALUATED AT THE SAME VERTEX
OF NGON2, OR THE SAME VERTEX OF NGON1 EVALUATD AT THE NEXT VERTEX

OF NGON2. CHOOSE THE FORMER WHEN [T IS TO THE LEFT OF THE LATTER,
OTHERWISE CHOOSE THE LATTER. TO ALLOW FOR THE CASES WHEN NEITHER
ABOVE VERTEX 1S NEXT, UNION TO THE POLYGON FORMED BY THE ABOVE

NGON1 EVALUATD AT ALL VERTICES OF NGONNZ.

LOGICAL FLAG,FLAGI1

DIMENSION X(1),Y(1),TAC1),IBC1) XW(1) , YW(1),1W(2,1),XS(1),
¥YS(1),PX(50),PY(50),WK(1),PGX(1),PGY(1),IPAR(2,1),
PARX(3) ,PARY (3) ,RX(1),RY(1),18(2,1),XCENC1),YCENC(1)

PGX,PGY CONTAINS X,Y COORDINATES OF NGON2. M2 IS THE NUMBER OF
DIFFERENT VERTICES OF NGON2. RX,RY CONTAINS THE POLYGGON DETERMINED
THE "USUALLY THE NEXT VERTEX" ALGORITHM, IR1 1S THE NUMBER

OF ENTRIES IN RX,RY. THE FINAL NUCUMUN RESULT IS STORED IN RX,RY.

CALL MESSAGA(7HNUCUMUN)

DATA IPAR(1,1),1PAR(2,1)/0,3/
TA1=1A(NGON1)

IB1=IB(NGON1)

M1=IB1-1A1

M2z 1B (NGON2) - 1 A(NGON2)

EP=3,

E=.001

FLAG=.T.

DETERMINE MOST NORTH VERTEX OF PlAAM.

CALL MESSAGC(7HNUCUMUN, ZHNGRTH)
NONGON2=NCGN=NORTH(1,M2, PGY)
NONGON1=NORTH(1A1,1B1-1,Y)

1=1

XC=XCEN(NGON1)

YC=YCEN(NGON1)

WRITE(7,5) XC,YC

FORMAT(xTHE CENTROID OF NGON1 IS %,2G15.5)
XC1=PGX(NONGON2) -XC

YC1=PGY (NONGON2) -YC

XC2=PGX (NONGON2+1) -XC

YC2=PGY (NONGON2+1) -YC

RX (1 1=ROU(X(NONGCON1T)+XC1)

RY (1) =ROUCY (NONGON1)+YC1)

WRITE(7,10) 1,RX(1),RY(])

ENDFILE 7

FORMAT(*THE x,13,x ENTRY IN RX,RY IS x,2615.5)

DETERMINE CANDIDATES FOR NEXT VERTEX.
MX=(MI+1)x(M2+1)

DO 2999 1=2,MX

PARX(1)=RX(1-1)

PARY (1)=RY(]1-1)

DETERMINE THE NEXT VERTEX OF NGON! EVALUATED AT THE VERTEX OF
NGOM2 ASSOCIATED WITH RX(I-1),RY(1-1).

NEXT1=NONGONT +1

A-33

e

OOO0O0O0

OO0

o000

IF(NEXT1.GT.IB1) NEXT1=1A1+MOD(NEXT1-1A1,1B1-1A1)
WRITE(7,15) NEXTI
15 FORMAT(xNEXT1= x,13)
ENDFILE 7
PARX (2) =ROU(X(NEXT1)+XC1)
PARY (2) =ROU(Y (NEXT1)+YC1)
WRITE(7,20) PARX(2),PARY(2)
20 FORMAT(xPARX(2) ,PARY(2) IS x,2G15.5)
ENDFILE 7

DETERMINE THE SAME VERTEX OF NGON1 EVALUATED AT THE NEXT VERTEX OF
NGON2.

PARX(3)=ROU(X(NDNGON1)+XC2)
PARY (3) =ROU (Y (NONGON1)+YC2)
WRITE(7,30) PARX(3),PARY(3)

30 FORMAT(xPARX(3),PARY(3) IS x,2G15.5)
ENDFILE 7
A=AREA(PARX, PARY, IPAR, 1)
IF(ABS(A).GT.E) GOTO 1000

F2X=PARX(2)-RX(1-1)
F2Y=PARY (2)-RY(1-1)
F3X=PARX(3) -RX(1-1)
F3Y=PARY(3)-RY(I-1)

D2=SQRT(F2XxF2X+F2Y*xF2Y)

D3=SQRT(F3X*xF3X+F3YxFQ3Y)

IF(D2.GE.D3+E) 1500, 2000
1000 CONTINUE

IF(A.GE.E) 1500,2000
1500 CONTINUE

NEXT VERTEX 1S (PARX(2),PARY(2)). THE NEXT VERTEX OF NGON1 EVALUATED AT

THE VERTEX OF NGON2 ASSOCIATED WITH RX(I-1),RYC(I-1).
RX(1)=PARX(2)
RY (1) =PARY (2)

NONGON1=NEXT1
WRITE(7,10) 1,RXt1),RY(])
IFCCABS(RX(I)-RX(1)).LE.EP) AND. (ABS(RY(1)-RY(1)).LE.EP))
$ GOTO 3000
GOTO 2999
2000 CONTINUE

NEXT VERTEX IS (PARX(3),PARY(3)). THE SAME VERTEX OF NGOM1 EVALUATED AT
THE NEXT VERTEX OF NGONZ2.

RX (1) =PARX(3)

RY (1) =PARY (3)

WRITE(7,10) I,RX(I),RY(I)
IFCCABS(RX(1)-RX(1)).LE.EP) AND. (ABS(RY(I)-RY(1)).LE.EP))

$ GOTO 3000
NONGON2=NONGON2+1
IF (NONGON2.GT.M2) NONGON2=MOD(NONGONZ2, M2)
WRITE(7,35) NONGON2
35 FORMAT (xNONGON2= x,13)
ENDFILE 7
XC1=PGX(NONGON2) -XC
YC1=PGY (NONGON2) -YC
XC2=PGX { NONGON2+1) -XC
YC2=PGY (NONGON2+1) -YC
2999 CONT!NUE

A-34

Y - ARV

Ex . ooy

40

3000

(e XeXe R e/

50

3500

5000

60

O0000

1000

20

FLAG=.F.

WRITE(6,40)

WRITE(7,40)

WRITE(8,40)
FORMAT (xNUCUMUN ERROR x)
CAlLL MESSAGR(7HNUCUMUN)
RETURN

CONT I NUE

UNION TO THE POLYGON FORMED BY THE ABOVE OPERATIONS NGON1 EVALUATED
AT ALL VERTICES OF NGON2.

IR1=1-1

WRITE(7,50) IR1,(RX(1),RY(I),I=1,1R1)

FORMAT (xRX,RY HAS x,13,x ENTRIES. (RX,RY) 1S x,/5(G13.%5,G13.5))
ENDFILE 7

DO S000 J=1,M2

XC1=PGX(J)-XC

YC1=PGY (J)-YC

DO 3500 1=1,M1

TATt=1A1+1-1

PX(I)=ROU(X(TATT)+XC1)
PY(1)=ROU(Y(TA11)+YC1)

CONTINUE

CALL MESSAGC(7HNUCUMUN, 7HPREIU)
SUB=7HNUCUMUN

CALL PREIU(RX,RY,IR1,PX,PY ,M1,1,1S,XS,YS,SUB,FLAG,FLAG1, JMAX)
CALL. MESSAGA(7HNUCUMUN)

IF(.NOT.FLAG) RETURN

CONTINUE

WRITE(7,60)

FORMAT(xTHE FINAL OUTPUT OF NUCUMUN IS x)

WRITE(7,50) IRT,(RXCI),RYC(1),1=1,{R1)

ENDFILE 7

CALL MESSAGR(7HNUCUMUN)

RETURN

END

FUNCTION NORTHC(IT,12,Y)

NORTH,GIVEN POLYGON (11,12,X,Y), RETURNS THE INDEX OF THE

MOST NORTH VERTEX OF THE POLYGON. THE NUMRER OF DISTINCT
VERTICES IN THE POLYGON IS 12-11+1.

DIMENSION Y (1)

REAL N

CALL MESSAGA(7HNORTH)

EP=0.0001

N=Y (I 1)

NORTH=11

WRITE(7,10) (Y(1),1=11,12)

FORMAT (xINPUT TO NORTH IS x,/5(613.6,613.6))
IBRERRE D]

00 1000 1=111,12

PY=Y (1)

IF(PY.LT.N+EP) GOTO 1000

N=PY

NORTH=1

CONTINUE

WRITE(7,20) NORTH,N

FORMAT(xNORTH OUTPUT. NORTH=x,13,x N=x,G15.5)
CALL MESSAGR(7HNORTH)

A-35

QOO0 OODOOOOOOOOO

OO000O00

XN

SUBROUTINE GOLDSEC(XPC,YPC,!1C1,LAX,LAY,LIA,LIB,LAN, XW, YW,
IW,XS,YS,IS,RX,RY, IR, INC,LN,LE,LS,LW,CLOSE, FLAG,
XWO, YWO, NUM, REM, | REM, I NUM, AREAS)

GOLDSEC USES THE METHOD OF GOLDEN SECTIONS TO GENERATE THE RESCALED
POLYGON Q FROM XPC,YPC WHERE THE AREA OF Q OUTSIDE OF THE LAND MASSES
IS CLOSE TO THE ENTIRE AREA OF XPC,YPC. THE PARTS OF

Q OUTSIDE OF THE LLAND MASSES ARE CALLED THE REMAINDER POLYGONS

AND ARE RETURNED IN XWO,YWO. IREM IS THE INDEX OF THE FINAL

SET OF REMAINDER POLYGONS. INUM(IREM) IS THE INDEX OF THE LARGEST
FOLYGON IN SET IREM.

NUM(1,J) 1S THE OFFSET OF THE [INDEX OF THE JTH POLYGON IN XWO, YWO.
NUM(2,J) 1S THE NUMBER OF VERTICES IN POLYGON J.

REM(1,K) 1S THE OFFSET OF THE INDEX OF THE KTH REMAINDER SET IN NUM.
REM(2,K) IS THE NUMBER OF POLYGONS IN REMAINDER SET K.

POINT(I) IS USUALLY THE REIMAINDER SET ASSOCIATED WITH WI,I=1 OR 2.

A IS THE AREA OF XPC,YPC.

AREAS(K) IS THE AREA OF THE LARGEST POLYGON IN REMAINDER SET K.

WHEN -AxCLOSE @ AREAS(K)-A @ AxCLOSE, THE ALGORITHM STOPS WITH THE
REMAINDER SET K AND THE REMAJMNDER POLYGON [INUM(K).

IN THE INITIALIZING PHASE OF THE ALGORITHM, SCALE=1. AND THE AREAS(1)
IS SUCH THAT AREAS(1) < A,

FURTHERMORE, IN THIS PHASE THE ALGORITHM MUST FIND A QUANTITY, NEXT,
S.T. THE CORRESPONDING AREAS SATISFIES THE STOPPING CRITERIA OR
AxCILLOSE< AREAS-A.

GOLDSEC 1S CALLED BY POSINT.

REAL LAX(1),LAY(1),NUSCALE,NEXT,LENGTH, INC,LN(1) ,LE(1),LS(1),
LW

INTEGER REM(2,1),POINT(2)

DIMENSION XPC(1),YPC(1),LIAC1),LIBC1),INUM(C1),
XS(1),YS(1),18(2,1) ,RX(1),RY(1),IR(2,1),
XWE1) , YW1, TW(2, 1),
XWOC1),YWD(1) ,NUM(2,1),AREAS(1)

LOGICAL FLAG

CALL MESSAGA(7HGOLDSEC)

CALL MESSAGC(7HGOLDSEC, 7HCENTRD)

CALL CENTRD(1,I1C1,XPC,YPC,A,AX,AY AXX,AYY A AXY)

CALL MESSAGA(7HGOLDSEC)

ACLOS=AXxCLOSE

XCEN=AX/A

YCEN=AY/A

WRITE(6,8) XCEN,YCEN,ACLOS

ENDFILE 6

WRITE(7,8) XCEN,YCEN,ACLOS

ENDFILE 7

FORMAT (*xXCEN=x,815.95, *YCEN=¥ ,G15.5, xACLOS=x,G15.5)
FLAG=.T.

SCALE=1,

1301,1)=0.

EP=0.00001

KAY=%5

THE LOWER BOUND OF THE SEARCH INTERVAL IS 1. STOP OR
DETERMINE UPPER BOUND OF THE SEARCH INTERVAL SO THAT THE
AREA OF THE

REMAINDER POLYGON(S),GENERATED BY THE UPPER BOUND, EXCEEDS Ti{E AREA
OF XPC,YPC.

LL=0

CALL MESSAGC (7HGOLDSEC, 7HREMA I NU)
LL=tL+1

A-36

o000

[eNeNe)

S0

100

13

500

600

1000

15

20

25

27

CALL REMAIN(XS,YS,{S,LAX,LAY,LIA,LIB,LAN, XW, YW, IW, RX,RY,IR,
LN,LE,LS,LW,SCALE,XPC,YPC, IC1,XCEN, YCEN,
XWO, YWO, NUM, REM, LL., AREAS, INUM)

CALtL MESSAGA(7HGOLDSEC)

WRITE(7,13) A,AREAS(LL)

IF(A-ACLOS.LE. AREAS(LL)) 50,100

CONT INUE

IREM=LL

CALL MESSAGR(7HGOL.DSEC)

RETURN

CONT I NUE

DO 1000 K=1,KAY

NEXT=NUSCALE (SCALE, INC)

CALL MESSAGC(7HGMNLDSEC, 7HREMAINU)

LL=LL+?

CALL REMAIN(XS,YS,1S,LAX, LAY, ,LIA, LIB,LAN XW, YW, IW,RX,RY, IR,
LN,LE,LS,LW,NEXT,XPC,YPC, IC1,XCEN, YCEN,
XWO, YWO, NUM, REM, LL, AREAS, INUM)

CALI. MESSAGA(7HGOLDSEC)

GW1=A-AREAS(LL)

WRITE(7,13) A,AREAS(LL),GW1

ENDFILE 7

FORMAT(xINPUT POLYGON AREA=%,G615.5,x REMAINDER POLYGON AREA=x,
G15.5,> INPUT AREA - REMAIMDER AREA=x,G15.5)

IF(ABS(GW!1).LE.ACLOS) 500, 600

CONTINUE

IREM=LL

CALL MESSAGR(7HGGCLDSEC)

RETURN

CONT I NUE

CHECK TO SEE 1F NEXT 1S SUCH THAT METHOD OF GOLDEN SECTIONS CAN BE
APPLIED

IF(A+ACLOS . LE AREAS(LL)) GOTO 1100

SCALE=NEXT

CONT I NUE

WRITE(6,15)

ENDFILE 6

WRITE(8,15)

FORMAT (xAN UPPER BOUND OF THE SEARCH INTERVAL HAS NOT BEEN x ,
*DETERMINED. RETURN CONTROL TO FUNCTION SELECTION (Y OR N) x)
READ(S5,20) Q

WRITE(6,20) Q

WRITE(7,20) Q

WRITE(8,20) Q

FORMAT(A1,12)

IF(Q.EQ.1HY) FLAG=.F.

IFC.NOT.FLAG) RETURN

WRITE(6, 25)

WRITE(6,27)

ENDFILE 6

WRITE(8,25)

WRITE(8,27)

FORMAT (xCALLCULATION OF THE UPPER BOUND OF THE SEARCH INTERVAL=X,
* WILL CONTINUE. x)

FORMAT (*CHANGE SCALE FACTOR JNCREMENT (Y OR N) x,

* FOLLOW Y IMMEDIATELY WITH 2 DIGIT POSITIVE INTEGER. x)
READ(S5,20) Q,NUINC

A-37

b WRITE(6,20) Q,NUINC
WRITE(7,20) Q,NUINC
WRITE(8,20) Q,NUINC
IF(Q.EQ. 1HY) INC=NUINC
GOTC 100

1100 CONT INUE

L
B 70 Yo v-zné.ill‘

ah .

THE METHOD OF GOLDEN SECTIONS APPLIED TO THE SEARCH INTERVAL
[SCALE, NEXT]1 FOLLOWS. SEE ZANGWILL P. 121.

QOO0

F1=(3. -SQRT(S.)) /2.
F2=(SQRT(5.)-1.)/2.

YT W

A FUNCTION EVALUATION CONSISTS OF THE FOLLOWING STEPS. GENERATE THE
RESCALED POLYGON Q(W), WHERE W=W1 OR W2. DETERMINE THE REMAINDER
POLYGONS OF Q(W). DETERMINE THE AREA OF THE REMAINDER POLYGONS.
KK=0

1150 CONTINUE
DO 3000 K=1,KAY
KK=KK+1
IF(KK.EGQ.1) 1200, 1500

OOO00

ON THE FIRST ITERATION THE PROGRAM BRANCHES TO THE FOLLOWING, IN ORDER
TO INITIALIZE THE ALGORITHM.

(s Xe XeXel

1200 CONTI NUE
GW1=6W2=0.
FL=F1x (NEXT~-SCALE)
W1=SCALE+FL

W2=NEXT~FL
CALL MESSAGC (7HGOLDSEC, 7HREMAING)
LL=LL+1 !
CALL REMAIN(XS,YS, 1S, LAX,LAY,LIA,LIB,LAN,XW, YW, IW,RX,RY, IR, !
s LN,LE,LS,LW,W1,XPC,YPC, IC1,XCEN, YCEN,
s XWO, YWS , NUM, REM, LL, AREAS, 1 NUM)

CALL MESSAGA{ 7HGOLDSEC)
GW1=ABS(A-AREAS(LL))
WRITE(7,40)A, AREAS(LL),GWI
ENDFILE 7

CHECK FOR OPTIMALITY.

o000

IF(GW1.LE. ACLGS) 1300, 1400
1300 CONTINUE

LL IS OPTIMAL

OO0

IREM=LL
CALI. MESSAGR(7HGOL DSEC)
RETURN

1400 CONTINUE i

OO0

LL IS NOT OPTIMAL d

POINT(1)=LL

LL=LL+

POINT(2)=LL

CALL MESSAGC(7HGOLDSEC, 7HREMAING)

CALL REMAIN(XS,YS,IS,LAX,LAY,LIA,LIB,LAN,XW, YW, IW,RX,RY, IR,

s LN,LE,LS,LW,wW2,XPC,YPC, IC1,XCEN, YCEN,
s XWO, YWO, NUM, REM, LL, AREAS, INUM)
A-38

000

OO0O0 0000

OO0O0

(e XoNeXeNeRel

40

1450

1500

1600

1700

1800

2000

CALL MESSAGA(7HGOLDSEC)

FORMAT (xINPUT POLYGON AREA=x,G15.%5,x REMAINDER POLYGON AREA=x,
G15.5,x ABS({INPUT AREA - REMAINDER AREA)>=x,G15.5)

GW2=ABS (A-AREAS(LL))

WRITE(7,40) A,AREAS(LL),GW2

ENDFILE 7

CHECK FOR OPTIMALITY. IF NOT OPTIMAL INCREMENT K COUNTER

IF(GW2.LE.ACLOS) 1450, 2900

CONTINUE

LL IS OPTIMAL

IREM=LL
CALL MESSAGR(7HGOL.DSEC)
RETURN

ON ALL BUT THE FIRST ITERAION THE PROGRAM BRANCHES TGO THE FOLLOWING
FROM LABEL 1150.

CONTINUE
THE FOLLOWING IS THE GENERAL GOLDEN SECTION ITERATION.

DETERMINE THE NEXT SEARCH INTERVAL.

IF(GW2-EP.LE.GW1) 1600, 2000

CONTINUE

THE NEW INTERVAL 1S (W1, NEXT).

GENERATE DATA FOR THE NEW W2. THE NEW Wl= THE OLD W2, SO THE DATA
ASSOCIATED WITH THE NEW W1 = DATA ASSOCIATED WITH OLD W2.

SCALE=W1

GW1=6Ww2

POINT(1)=POINT(2)

Wi=w2

W2=NEXT-F1x (NEXT-SCALE)

CALL MESSAGC(7HGOLDSEC, 7ZHREMAING)

LL=LL+1

CALIL. REMAIN(XS,YS,1S,LAX, LAY, LIA,LIB,LAN,XW, YW, IW,RX,RY, IR,
LN,LE,LS,LW,W2,XPC,YPC, 1C1,XCEN, YCEN,
XWO, YWO,NUM REM,LL,AREAS, I NUM)

CALL MESSAGA(7HGOLDSEC)

GW2=ABS(A-AREAS(LL))

WRITE(7,40) A,AREAS(LL), GW2

ENDFILE 7

CHECK FOR OPTIMALITY IFf MOT OPTIMAL, UPDATE POINT AND INCREMENT K.

IF(GW2.LLE. ACLDS) 1700,1800

CONTINUE

IREM=LL

CALL MESSAGR(7HGOL.DSEC)

RETURN

CONTINUE

POINT(2)=L1L

GOTO 2900

WHEN GW2-EP.GT.GW1 THE PROGRAM BRANCHES TO THE FOLLOWING FROM LABEL
1500. THE NEW INTERVAL IS [SCALE,W2].

GENERATE DATA FOR THE NEW W1. THE NEVW W2 = THE OLD W1, SO
THE DATA ASSOCIATED WITH THE NEW W2 = DATA ASSOCIATED WITH OLD W1.

CONTINUE
NEXT=w2

2200

2300

2900
3000

60

70

3300

3400

4000

80

GW2=GW1

POINT(2)=POINT(1)

w2=w1

W1=SCALE+F1x(NEXT-SCALE)

CALL MESSAGC(7HGOLDSEC, 7HREMAING)

LL=LL+1

CALL REMAIN(XS,YS, 1S, LAX,LAY,LLIA,LIB,LAN,XW,YW, IW,RX,RY, IR,
LN,LE,LS,LW,W1,XPC,YPC,I1C1,XCEN, YCEN,
XWO, YWO, NUM, REM, LL , AREAS, | NUM)

CALL MESSAGA(7HGOLDSEC)

GW1=ABS(A-AREAS(LL))

WRITE(7,40) A ,LAREAS(LL),GWI1

ENDFILE 7

CHECK FOR OPTIMALITY, IF NOT OPTIMAL,UPDATE POINT AND INCREMENT K.

[F(GWI.LE.ACI @S) 2200,2300

CONTINUE

IREM=LL

CALL MESSAGR(7HGOLDSEC)

RETURN

CONTINUE

POINT(1)=LL

CONTINUE

CONT I NUE

END OF DO LGOP 3000.

G11=AREAS(POINT(1))/A

G22=AREAS(PDINT(2))/A

WRITE(6,60) W1, ,G11,W2,622

WRITE(7,60) W1,G11,W2,622

ENDFILE 6

WRITE(8,60) W1,G11,W2,G22

FORMAT (xAT W1=»,615.5,x THE REMAINDER AREA IS x,615.5,% OF A.x,
*AT W2=x,G15.5,x THE RCMAINDER AREA [S x,G15.5,» OF A.x)

WRITE(6, 70)

ENDFILE 6

WRITE(8,70)

FORMAT (xACCEPT W1 OR W2 AS OPTIMAL (Y OR N). FOLLOW Yx,
* IMMEDIATELY BY 01 FOR W1, 02 FOR W2x)

READ(5,20) G,NUINC

WRITE(6,20) Q,NUINC

WRITE(7,20) Q,NUINC

WRITE(8,20) Q,NUINC

IF(Q.EQ. THN) GOTO 40600

IF(NUINC.EOQ.01) 3300, 3400

CONTINUE

IREM=POINT(1)

CALL MFSSAGR({ 7HGOL.DSEC)

RETURN

CONT I NUE

IREM=POINT(2)

CALL MESSAGR(7HGOLDSEC)

RETURN

CONTINUE

WRITE(6,80)

ENDFILE 6

WRITE(8, 80)

FORMAT (sAREA OF THE REMA!'NDER POLYGON(S) 1S NOT CLOSE TO x,

*AREA OF THE INPUT POLYGON,XPC,YPC. RETURN CONTROL TO «x,

*FUNCTION SELECTION (Y OR N)x)

READ(5,20) Q

WRITE(6,20) Q

WRITE(7,20) Q

A-40

S —

.

-y

000000000

O000O00DOOOO0OOO0

90

WRITE(8,20) Q

IF(Q.EQ.1HY) FLAG=.F.

IF(.NOT.FLAG) RETURN

WRITE(6, 90)

ENDFILE 6

WRITE(3, 90)

FORMAT (»THE GOLDEN SECTION ITERATIONS WILL CONTINUEx)

GOTO 1150

RETURN

ENO

SUBROUTINE INTO(XS,YS, 1S, JMIN, JMAX,K XWO, YWO, NUM, REM, LL,MAXPOL, IP,
L)

INTO INSERTS THE CONTENTS OF (XS(1S(1,J0)+]§),YS(IS(1,J0)+1)),
121,18(2,J0), JO=JMIN,JMAX, IN (XWO(NUM(1,KO)+1), YWO(NUM(1 ,KO)+1)),
1=21,NUM(2,KO), KO=REM(1,LL)+MAXPOL+1,REM(1,LL)+MAXPOL+JMAX-JMIN+T,
WHERE NUM(2,K0)=1S(2,J0). SEE COMMENTS OF REMAIN FOR DEFINITIONS OF
REM AND NUM. WHEN INTO IS CALLED, MAXPOL IS THE NUMBER OF POLYGONS IN
POSITION POLYGONS 1 TO IP-1 BUT NOT IN LAND 1 TO IL.

THUS MAXPOL=REM(2,LL) AT ITERATION IP-1.

DIMENSION XS(1),YS(1),18(2,1),XWO(1),YWO(1),NUM(2,1)
INTEGER REM(2,1),REM1,REM11
CALL. MESSAGA(7HINTO)

A DATA STATEMENT IN MOVMENT IMITIALIZES REM(1,1)=NUM(1,1)=0.
REM(1,LL+1) IS FIXED WHEN THE FINAL NUMBER OF POLYGONS IN SET LL IS
KNOWN. THUS AT THE END OF THIS ROUTINE REM(1,LL+1) 1S COMPUTED.
REM(2,LL) VARIES AT EACH CALL TO INTO. REM(2,LL) SHOULD BE SET TO ©
EACH TIME IL INCREASES. EACH TIME IL INCREASES IP IS RESET TO 1

AND MAXPOL 1S RESET TO O, THUS IP=1 IS THE TESY TO SET REM(2,LL) TO O.
AS IL IS CONSTANT, AND EACH TIME [P INCREASES (MAXPOL 1S NONZERC HERE)
REM(2,LL) INCREASES BY JMAX EACH TIME INTO IS CALLED.

NUM(C1,REM(1,LL+1)+1) IS FIXED WHEN THE FINAL NUMBER OF VERTICES IN SET
LL IS KNOWN. THUS NUM(1,REM(),LL+1)+1) IS COMPUTED AT THE END OF THIS
ROUTINE.

REM1=REM(1,LL)
IFCIP.EQ. 1) REM(2,LL)=0
REM(2,LL)=REM(2,LL)+JMAX-JMIN+I

KO IS THE NUMBER OF THE POLYGON CURRENTLY BEING TRANSFERRED TO
(XWO, YWO) .

KO=REM1+MAXPOL
WRITE(7?7,30)
FORMAT(xTHIS OUTPUT 1S FROM ROUTINE INTO. x)
WRITE(7,40) LL,IL,IP,MAXPOL, JMIN, JMAX, K LL ,REM(1,LL),! L,REM(2,LL)
ENDFILE 7
FORMAT (xI_.L=x,13,x IL=x,13,x [P=x,13,*x MAXPOL=x,13,x JMIN=x,13,
« JMAX=x,[3,% REM(1,x,13,x)=%,13,x REM(2,x,13,x)=x»,13)
DO 3000 JO=JMIN, JMAX
KO=KO+1
I81=18(1,J0)
WRITE(7,4%5) 1S(1,J0)
FORMAT(x1S1=1S(1,J0)=x,18)
NUMI=NUM(1,KO)
NUM(2,K0)=182=18(2, J0)
FORMAT(*182=1S8(2,J0)=x,18)
WRITE(7,47) 1S(2,J0)

A-4l

s

i

Cc WRITE(7,48) (XS(IS1+1),YS(IS1+1),1=1,182)
C 48 FORMAT(x(XS,YS) 1S8x,/(5(G13.5,G13.5%5)))
NUM(1,KO+1)=NUM(1,KO) ¢+1S2
DO 2000 1=1,182
XWO(NUMI+1)=XS(ISt+])
YWO(NUMI+1)=YS(IS1+1)
2000 CONTINUE
WRITE(7,50) JO,KO,NUM(1,KO), KO, NUM(2,6KO)
So FORMAT (xJO= x, 13, xNUM(1,x,13,x)= x I3, xNUM(2,x,13,x)= x,13,
$ *THE CONTENTS OF XWO,YWO ASSOCIATED W!TH THESE INDICES AREx)
WRITE(7,60) (XWO(NUMI+1), YWO(NUMI+]),1=1,]S82)
C ENDFILE 7
60 FORMAT(S5(G13.6,G123.6))
3000 CONTINUE

o000

COMPUTE REM(1,LL+1),NUM(1 REM(1T,LL+1)+1),MAXPOL

REM(1,LL+1)=REM11=REM(1,LL)I+REM(2,LL)
NUM(1,REM11+1)=NUMC1,REM11)+NUM(2, REMI11)
MAXPOL =MAXPOL +JMAX - JMIN+]
CALL MESSAGR(7HINTO)
RETURN
END
SUBROUTINE MOVFCEN(M,N,JA,JB, X,Y,lA,IB,P,SE,KE,KILA, XW,YW,J, ILA,
$ JLA,XCEN,YCEN,H,LAX,LAY LIA,LIB,LAN,LAND,LN,LE,LS, LW, INPUT,
$ COUNT,FLAG)
MOVECEN 1S CALLED BY POL THE
VELOCITY DISTRIBUTION 1S MOVED TO TIME M+1 ACCORDING TG THE POSITION
DISTRIBUTION AT TIME M+1 AND MK. LLAND INTERACTIONS ARE CONSIDERED. A MOVED
VELOCITY POLYGON WHOSE CENTROID IS CONTAINED IN A LAND MASS IS REPLACED BY
TWO VELOCITY POLYGONS. MOREOVER THE CENTROIODS OF THE
REPI_LACEMENT POLYGONS ARE CONTAINED IN NO LAND MASS.
DIMENSION JA(2,5,9),JB(2,5,9) X(1),Y(1),IAC(1),IB(1),P(1),
$ SE(1),H(1),KE(2,5,9) , XW(1),¥YW(1),XCEN(1),YCENC1),VX(2),VY(2),
$ CPROB(2),LIACT),LIB(1)
REAL. LAX(1),LAY (1), LNCT1),LECT),LSC1),LW(1)
INTEGER COUNT,ENSYDZ,ENS
LOGICAL LAND, INPUT(2,5,9),FLAG,MINIMAX
CAL)L. MESSAGA(7HMOVECEN)
WRITE(6,10)
WRITE(8,10)
10 FORMAT(xSLIN 2x)
M1=M+1

OO0O00O00

FIND,MK, THE MOST RECENT [NPUT CENTROID DISTRIBUTION IN ORDER TO
MAINTAIN VELOCITY TENCENCIES.

o000

MK =M
FLAG= T.
IFCC.NOT LAND) .OR.(INPUT(2,M,N))) GOTO 300
DO 200 ME=2 M
MK=M-ME +1
IFCINPUT(2, MK, N)) GOTO 300
200 CONT!INUE
h WRITE(6,15)
WRITE(?7,15)
[ENDFILE 6
[ENDFILE 7
WRITE(8,15)
15 FORMAT(=VELOCITY DISTRIBUTION 1S UNDEFINEDx)
FLAG= . F.

o 000 [t Xe X XeNel

OO0

0O 00000

300

20

400

ENDFILE 6
WRITE(7,25) J1, 1L
ENDFILE 7 3
25 FORMAT(x MOVECEN CALLS ENSYD2x,2(13))]
ENS=ENSYD2(DBLE(X0) , DBLE(YO) , XW, YW, LO) b |
WRITE(7,27) ENS 3
27 FORMAT (xENSYD2=x,12)
IF(ENS.EQ.0) GOTO 2900 |
WRITE(8,30) J1,1L i
WRITE(6,30) J1,IL
ENDFILE 6
30 FORMAT(*AFTER MOTIGN CENTROID OF x,13,x IS IN LAND MASS x,
s 13)
COMPUTE REPLACEMENT POLYGONS.
COURSE CHANGE PROBABILITIES ADD TG 1. THESE PROBABILITES
DISTRIBUTE THE WEIGHT OF POLYGON J1 AMONG THE TWO VELOCITY POLYGONS
COMPUTED BY THE CODE BELOW TG LABEL 1000.
WRITE(6,40) ¢
ENOFILE 6
WRITE(8,40)
40 FORMAT(*PROBABILITY OF COURSE CHANGE - -COUNTERCLOCKWISE x,

IF(.NOT.FLAG) RETURN

CONTI{NUE

SE1=-SE(1+KE(1 ,MK,N})+SE(1+KE(1,M1,N))
SE2=-SE(2+KE(1,MK,N))+SE(2+KE(1,M1,N))
JJ=0

JA2=JA(2,MK,N)

JB2=JB(2,MK,N)

DO 4000 J1=JA2,JB2

IA1=1A(JY)

181=1B(J1)

IW1=IB1-1AT)

IF({.NOT.LAND) GOTO 3100
XO=XCEN(J1) -SE}

YO=YCEN(J1)+SE2

DO 3000 IL=1,LAN

WRITE(6,20) J1, 1L

ENDFILE 6

WRITE(7,20) J1,1L

ENDFILE 7

WRITE(8,20) J1,1IL

FORMAT (x MOVECEN CALLS MINIMAXx,2(13))
IF(MINIMAX(YO,XO,YO, X0, LNCIL) ,LECIL),LSCIL),LWCIL)))
$ GOTO 2900

TEST FOR (XO,YO) CONTAINED IN LAND MASS IL,
SINCE (XO,YO) 1S CONTAINED IN THE RECTANGLE OF LAND MASS IL.
IF NOT, INCREASE IL.

Li=LTACIL)
L2=LIBCIL) -1
DO 400 [=L1,L2
LO=1~-L1+1

XW(LO) =LAX (1)
YW(LO)=LAY(I])
CONT I NUE ;
WRITE(8,25) J1,IL i
WRITE(6,25) J1, 1L ‘

$ /* F10.5x)
READ(5,50) CPROB(1)

A-43

CPROB(2) 21, -CPROB(1)
50 FORMAT(F10.5)
WRITE(6,60) CPROB(1),CPROB(2)
[ENDFILE ©
WRITE(8,60) CFROB(1),CPROB(2)
60 FORMAT(*COUNTERCLOCKWISE COURSE PROBABILITY= x,F10.5,
$ x ,CLOCKWISE COURSE PROBABILITY= x,F10.5)

CALCULATE NEW VELQCITY POLYGONS

WRITE(7,60) CPROB(1),CPROB(2)
ENDFILE 7

EACH VELOCITY POLYGON, BEING COMPUTED, HAS CENTROID GIVEN BY
NEWCEN. (VX(1),VY(1)) CONTAINS THE COUNTERCLOCKWISE (OR LEFT)
RESULTING CENTROID, (VX(2),VY(2)) CONTAINS THE CLOCKWISE (OR RIGHT)
RESULTING CENTROID. (VX,VY) ARE COMPUTED TO BE CONTAINED IN NG LAMD
MASS AND CLOSE TO (XO,YO).

OO0O0OOO0O0 000

CALL MESSAGC (7HMOVECEN, 7HNEWCEN)

CALI. NEWCEN(XO,YO,LAX,LAY, 1A, LIB,LAN,LN LE,LS,LW,IL,
$ VX,VY,SE(1+KE(1,M1,N)),SE(2+KE(1T,M1,N)) XW, YW, LO,CO'"NT,
$ FLAG)

CALL MESSAGA(7HMOVECEN)

IF(.NOT.FLAG) RETURN

DO 1000 K=1,2

DO 800 I1=1A1,1B1
TU=1-TA1+1
XW(IU)=X(1)-XCENCJIT)+VX(K)

YW(ITU)=Y (1) -YCENCJT)+VY(K)
800 CONTINUE
CAI.LL MESSAGC(7HMOVECEN, 7HVEC)

CALL VEC(1,IW1, XW,YW)
CALL MESSAGA (7HMOVECEN)
{ JJ=JJ+1

CALL MESSAGC(7HMOVECEN, 7HPUT)
CALL PUT(2,M1,N,JJ,IWI XW, YW, TA IB,JA,JB,J X, Y, ILA,JLA)
CALLL MESSAGA(7HMOVECEN)
P(J)=P(J1)xCPROB(K)
1000 CONTINUE
GOTO 3900
2900 CONTINUE

[
c CENTRO!ID OF NGON J1 IS NOT CONTAINED IN LAND MASS IL.
c
3000 CONTINUE
C
[CENTROID OF NGON J! 1S NOT CONTAINED IN ANY LAND MASS
c
3100 CONTINUE
DO 3500 1=1A1,18B1
Tu=1-1A1+1

XWCIUY=X(1)+SED
YW(IU)=Y(])+SE2
3500 CONTINUE

CALLL MESSAGC(7HMOVECEN, 7HVEC)

CALL VEC(1, IW1,XW,YW) !
CALI. MESSAGA(7HMOVECEN)

JJI=JJi+

CALl. MESSAGC (7HMOVECEN, 7HPUT) u
CALLL PUT(2,M1,N,JJ,IW1, XW,YW, 1A, 18,JA,J8,J.X,Y,1LA, JLA) '

A-44

0000000000

OOO0O0O00 O

(e X 2]

3900
4000

10

$x XAGS= x,G15.5,x YOS= x,G15.95)

190

200

1
P
CALL MESSAGA(7HMOVECEN) |

P(J)=P(J1) ‘
CONTINUE IS
CONTINUE)
CALL MESSAGC(7HMGVECEN, 7HUPDATE) yi
CALL UPDATE(MI,N,JA,JB,X,Y, 1A, 1B,P,XCEN, YCEN, J, ILA, JLA, SE,KE, |

H,KLA,FLAG, 2)

CALL MESSAGA(7HMOVECEN)

WRITE(6,97)

ENDFILE 6

WRITE(?7,97)

ENDFILE 7

WRITE(8,97)

FORMAT(xSLIN 1x)

CALL MESSAGR(7HMOVECEN)

RETURN

END

SUBROUTINE NEWCEN(XO,YO,LAX,LAY,LIA,LIB,LAN,LN,LE LS,LW,IL,VX,VY,
SE1,SE2, XW, YW, LO, COUNT, FLAG)

NEWCEN I TERATIVELY CALCULATES CANDIDATES FOR NEW VELOCITY CENTROIDS. ALL
CANDIDATES ARE OF THE FORM (X(A),Y(A)) WHERE
X(A)=SE1+(XO-SE1)COS(A)+(YO-3E2)SINCA)
Y(A)=SE2+(YO-SE2)COS(A) -~ (XO-SE1)SIN(A).

THE ALGORIHM STOPS WHEN A NEGATIVE A=A} AND A POSITIVE A=A2 ARE FOUND
S.T. (X(A1),Y(A1)) AND (X(A2),Y{A2)) ARE CONTAINED IN NO LAND MASS,

OR WHEN TIME IS UP.

NEWCEN 1S CALLED BY MOVECEN.

DIMENSION LIACT),LIBC1),VX(1), VY1) XW{1), YW(1), XS(200),YS(200)
REAL LAX(1),LAY(1),LN(1) ,LEC1),LS(1),LW(1)

INTEGER TIME, CAUNT, ENSYD2Z2, ENS

LOGICAL FLAG,FLAG1,MINIMAX

DATA P1/3.141592653/

CALL MESSAGA(7HNEWCEN)

X0S=X0-SE1

YOS=YO-SE2

DELTA=P1/18.

D2=DELTA

FLAG=.T.

FLAGT= . F.

WRITE(7,10) XO,Y0,6SE1,SE2, XCS,Y0s

FORMAT (xX0O= x,615.5,x YO= x,G15.5,x SEl= *x,G15.5,x SE2= x,615.5,

ENDFILE 7
KAY=18

KK 1S THE NEW CENTROID INDEX OF DIRECTION,

WHEN KK=1, THE COUNTERCILOCKWISE NEW CENTROID 1S COMPUTED AND STORED IN
(VX(1),VY(1)). WHEN KK=2, THE CLOCKWISE NEW CENTROID 1S COMPUTED AND
STORED IN (VX(2),VvY(2)).

DO 3000 KK=1,2

10=0

CONT [NUE

TIME=0Q

TIME COUNTS THE ABSOLUTE NUMBER OF CANDIDATES FOR NEW CENTROID
GENERATED FOR FIXED KK.

CONTINUE

DO 2000 }TER=1,KAY

TIME=TIME+]

DEL 1 =DELTA*] TER

A~45

IF(IO.NE.O) DELI=D1+D2x1TER
IF(KK.EQ.1) DELI=-DELI
COSDEL =COS(DEL 1)
SINDEL=SIN(DEL!)

OO0

X1=SE1+XOSxCOSDEL+YOS*xSINDEL
Y1=SE2+YOS*xCOSDEL -X0SxS1NDEL
: WRITE(7,15) TIME, ITER,DELI, X1

15 FORMAT(xTIME=

$x Y11= x,615.5)

CALL MESSAGC(7HNEWCEN
ENDFILEE 7

x,13,x ITER=

CHECK FOR (X1,Y1)

[eXeXe Xl

WRITE(7,17) ENS

17 FORMAT(xENSYD2=x,12)
IF(ENS.EQ. 1) GOTC 1900
FLAG1=.T.

(X1,Y1) IS NOT COMTAINED
CHECK FOR

DO 1000 L=1,LAN

WHEN L=1L,

000 0000

IF(L.EQ.IL) GOTO 900
CALL MESSAGC(7HNEWCEN
CHECK FOR (X1,Y1)

(9]

Cc CHECK FOR (X1,Y1)

Li=L1Aa(wL)

L2=LIB (L)

DO 400 1=L1%,L2
10=1-L1+1
XS(18)=LAX(1}
YS(IG)=LAY ()

CONTINUE

10=L2-L1+1

CALL MESSAGC(7HMEWCEN

400

WRITE(7,17) ENS
IF(ENS.EQ.0) GOTO 900
(X1,Y1) 1S CONTAINED

(X{DEL1),Y(DEL1)) 1S
(X1,YH)

O00O00O0O0

10=L
D1=DELI-D2
D2=D2/10.
IF(TIME.LE.COUNT)
WRITE(6, 20)

c ENDFILE 6
WRITE(8, 20)

COMPUTE CAMDIDATE FOR NEW CENTROID,

Y1
x,13, x DELI=

, 7HENSYD2)

IN LAND IL.

ENS=ENSYD2(DBLE(X1),DBLE(Y1),XW,YW,LO)

IN LAND MASS IL.
(X1,Y1) CONTAINED It OTHER LAND MASSES.

THE ANSWER 'S ALLREADY KNOWN.

, ZHMINIMAX)

IN THE RECTANGLE OF LAND L.
FFOMINIMAX (YT, X1,Y7, X0, LN(L) ,LE(L),LS(L),LW(L))) GOTOG 900
IN LAND L.

. 7HENSYD2)
ENS=ENSYD2(DBLE(X1),DBLLE(Y1),XS,YS,10)

IN LAND MASS L.
THE PROPERTY (X(DEL!-D2),Y(DELI-D2)) IS
IN LAND L.
CONTAINED IN NO LAND.

GOTO 200 v

20 FORMAT (x THE NUMBER OF ALI_OWED

(X1,Y1),

*x,615.5,x X1= x,615.5,

IF SO, COMPUTE NEW (X1,Y1)

IF NOT INCREASE L..

IF NOT INCREASE L

THE [NTERVAL, [DELI-D2,DELI1], HAS
IN LAND IL, AND

THE INTERVAL IS SEARCHED TO FIND {

ITERATIONS 1S EXCEEDED.x,

A-46

$ *RETURN CONTROL TO FUNCTIGN SELECTION (Y OR N)x)
READ(5,25) Q
25 FORMAT (A1)

IF(Q.EQ.1HY) FLAG=.F.
IF(.NOT.FLAG) RETURN
WRITE(6, 30)
[ENDFILE 6
WRITE(8, 30)
30 FORMAT (x THE NEWCEN INTERATIONS WILL CONTINUE. x)
GOTO 190
900 CONTINUE

c
[(X1,Y1) 1S NOT CONTAINED IN LAND MASS IL, NOR IN THE RECTANGLE OF
c LAND MASS L, NOR IN LAND MASS L.
[
1000 CONTINUE
c
c (X1,Y1) 1S A FEASIBLE NEW CENTROID, SINCE IT IS CONTAINED IN NO
[LAND MASS.
c
VX(KK) =X1
VY (KK)=Y1
GOTO 2900
1900 CONTI NUE
o]
Cc (X1,Y1) 1S CONTAINED IN LAND MASS IL
o

2000 CONTINUVE
2900 CONT I NUE
3000 CONTINUE
WRITE(7,49)
49 FORMAT(xCOUNTERCLOCKWISE NEW CENTROID WHEN KK=1, CLOCKWISE MNEW x,
$ xCENTROID WHEN KK=2,x)
DO 4000 KK=1,2
WRITE(7,50) KK,VX(KK), KK, VY (KK)
4000 CONTINUE

SO FORMAT(xVX(x,11,x)= x,615.5,% VY(x,]1,x)= x,615.5)
CALL MESSAGR(7HNEWCEN)
RETURN
END

SUBROUTINE REMAIN(XS,YS,1S,LAX,LAY,LIA,LIB,LAN,XW,YW, IW,RX,RY, IR,
$ LN,LE,LS,LW,ALPHA,XPC,YPC, IC1,XCEN, YCEN, XWO, YWO, NUM, REM, L,
$ AREAS, INUM)

REMAIN COMPUTES THE REMAINDER POLYGONS. THAT 1S A POLYGON O 1S COMPUTED
FROM XPC,YPC, XCEN,YCEN, AND THE SCALE FACTOR ALPHA. REMAIMN CALCULATES
THOSE PARTS OF Q INTERSECTING NO LAND MASS. EACH SUCH PART OF @, CALLED
A REMAINDER POLYGON, IS A MEMBER OF REMAINDER SET LL.

ALL REMAINDER SETS ARE STORED IN XWO,YWO.

REM(1 ,LI.) IS THE OFFSET OF THE INDEX OF REMAINDER SET LL, ALSO CALLED
REM1, IN NUM.

REM(2,LL) IS THE NUMBER OF POLYGONS IN REMAINDER SET LL, ALSO CALLED
MAXPOL, IN NUM.

NUM(1,J) 1S THE OFFSET OF THE INDEX OF THE JTH POLYGON IN XWO,YWO,

ALSO CALLED NuUM1.

NUM(2,J) IS THE NUMBER OF VERTICES IN THE JTH POLYGON IN XWO,YWO,

ALLSO CALLED NuM2.

THE OFFSET OF POLYGON K IN REMAINDER SET LL 1S REM(1,LL)+K

THE OFFSET OF THE INDEX OF POLYGON K IN REMAINDER SET LL IN XWO,YwWO IS
NUM(1,REM(1,LL) +K) .

THE VERTICES OF POLYGON K IN REMAINDER SET LL ARE GIVEN BY

[eXeXeXeNeNoNeNeNeNoNeRoRoNo NoNo RoNe!

A-47

' T S uoe rre | ‘

c XWOCNUM(T ,REM(1,LL)+K)+1) , YWO(NUM(1 REM(Y,LLI+K)+1), 1=1,NUM(2,REM(1,LL)
o +K)
C AREAS(LL) 1S THE AREA CONTAINED THE I.ARGEST POLYGON [N REMAINDER SET LL.
[INUM(LL) 1S THE INDEX OF THE LARGEST POLYGON IN SET LL.
C REMAIN [S CALLED BY GOLDSEC AND POSINT.
c
REAL LAX(1),LAY(1),NORTH,LNC1),LE(1) ,LSC(1),LW(1)
INTEGER REM(2,1),REM)
DIMENSION XPC(1),YPC(1),LIACT),LIBC1) , XW(1),YW(1),IW(2,1),
$ RX(O1),RY(1),IR(2,1),INUMC1), XWO(1),YWOC(1),
$ NUM(2,1),AREAS(1),XS8(1),YS(1),18(2,1),XT(200),YT(200),WK(300)
CALL MESSAGA(7HREMAIN)
IRCT,1)=1S(1,1)=1IW(1,1)=0
REM1=0
IF(LL.GT. 1) REMI=REM(1,LL)
NUMR=NUM(1,REM1+1)
DO 1000 1=1,1C1
RX(1)=ALPHAXXPC(I)+(1.-ALPHA)xXCEN
RY (1) =ALPHAXYPC(I)+(1. -ALPHA)YXYCEN
1000 CONTINUE
IR(2,1)=1C1
JMAX=1
MAXPOL =1
C
Cc MAXPOL KEEPS A RUNNING TOTAL. OF THE NUMBER OF POLYGONS IN POSITION
[POLYGONS 1 TO IP-1 BUT NOT IN LAND 1 TO 1L. MAXPOL 1S UPDATED
[IMMEDIATELY BEFCORE IP INCREASES AND AT THAT POINT IT IS THE
[NUMBER OF POLYGONS IN POSITION POLYGONS 1 TGO [P BUT NOT IN LAND
[1 70 IL.
Cc
Cc MAXPOL COUNTS THE NUMBER OF POLYGONS STORED IN XWO,YWO FOR REMAINDER
Cc SET LL. LAN IS THE NUMBER OF LAND MASSES.
C
DO 4000 IL=1,LAN
WRITE(7,20) 1IL
20 FORMAT(x1L=%,13)
[
c TEST EACH CHAIN IN RX,RY FOR INTERSECTION WITH LAND MASS IL
Cc
NO=MAXPOL
MAXPOL=0
L1=LIACIL)
L2=sL1B(IL) -1 . . .
DO 3000 [P=1,NO
CALL MESSAGC(7HREMAIN , 7HRECTAN)
[1=IRC1,IP)+1
12=1IR(1,IP)+IR(2,1P)
CALL RECTAN(I11,12,RX,RY,NORTH, EAST, SOUTH,WEST)
CALL MESSAGC(7HREMAIN ,7HMINIMAX)
IF(MINIMAX(NORTH, EAST, SOUTH, WEST,LNCIL) ,LECIL) ,LS(IL),
$ LW(IL))) 1500,17C0
1500 CONTINUE
c
c POLYGON [P DOES NOT INTERSECT LAND MASS IL.
c STORE POLYGON IP IN (XYWO,YWO).
C
CALL MESSAGC(7HREMAIN , 7HINTO)
JMIN=JMAX=]P
CALL INTO(RX,RY,IR,JMIN, JMAX, K XWO, YWO, NUM, REM, LL,MAXPOL, IP,
$ (W)
Cc

A-48

- PR ESPCI T S 4 il

TR AT

[N

et =
R R VR

3

——r

(e X e}

1700

[eXeNeXe]

1800

1900

1950

35

2000

40

23800
3000

COOOOOOOO0O0O0O0 OO0

INCREMENT [P COUNTER

GOTO 2900
CONTINUE

A NONEMPTY INTERSECTION BETWEEN IL AND IP 1S POSSIBLE.
GENERATE AND STORE THE POLYGON(S) IN [P BUT NOT IN IL
IN (XWO,YWO). KALC=3.
DO 1800 I=11,12
[0=1-~11+1
XW(CI0)=RX(1)
YW(JIO)=RY (1)
CONTINUE
DO 1900 1=L1,L2
LO=1-L1+1
XTLO)Y=LAX(D)
YT(LO)=LAY(])
CONTI NUE
CALL MESSAGC(7HREMAIN ,7HIUCALC)
CALL TUCALC(XW,YW, 10,XT,YT,LO, 3,WK, 300, JMAX,1S,20,XS,YS,200)
CALL MESSAGA(THREMAIN)
IF(JMAX.LE.O) 1950, 2000
WRITE(8,35) JMAX
WRITE(6,35) JMAX
ENDFILE 6
WRITE(7,35) JMAX
ENDFILE 7
FORMAT(*1UCALC ERROR IN REMAIN.JMAX= x,13)
STOP 10
CONTINUE
WRITE(8,40) IL, 1P, JMAX
WRITE(6,40) IL,IP,JMAX
ENDFILE 6
WRITE(7,40) IL, 1P, JMAX
ENDFILE 7
FORMAT(xIL=x,13,x IP=x,13,x THE NUMBER OF RESUILTS CHAINS x,
x=JMAX= x,13)
JMIN=1
CALL MESSAGC(7HREMAIN , 7HINTO)
CALL INTO(XS,YS, 1S, JMIN, JMAX,K XWO, YWO, NUM, REM, L), MAXPOL, IP,
[§]
CALL MESSAGA(7HREMAIN)
CONTI NUE
CONT [NUE

THE FOLLOWING CODE TRANSFERS THE DEVELOPING REMAINDER RESULT, IN
(XWO,YWO) TO (RX,RY). THIS TRANSFER IS UNMNECESSARY WHEN IL=LAN.
IFCIL.EQ.LAN) GOTO 3999

MAXPOL=REM(2,L L)

TRANSFER TO (RX,RY) THE REMAINDER POLYGONS COMPUTED FROM THE
INTERSECTION OF LAND MASS IL. AND THE CURRENT CONTENTS OF (RX,RY).
NUMR=THE OFFSET OF THE IMNDEX OF POLYGON 1 IN SET LL.

NUM1=THE OFFSET OF THE INDEX OF POLYGON 1P |IN SET LL.

THEREFORE NUM1=NUMR+NUM(2, 6 REM1+1)+. . . +NUM(2 REM1+IP-1), FOR IP>1,
WHENCE NUM1T-NUMR=NUM(2,REM1+1)+. . . +NUM(2 REMI+41P-1) IS THE

APPROPRIATE OFFSET IN IR.

WRITE(6,45) 1L,MAXPOL

A-49

& " I

T o,

T ae

o000 000

c

45
S0

3400
55
3500

3999
4000

4900
5000
5050

65

70

6000

75 FORMAT(x1P=x,13,x NUM(1,x,13,x)=x,13,x NUM(2,x,13,*x)=x,13,x THEx
, *CONTENTSE OF XWO,YWO ASSOCIATED WITH THESE

$

ENDFILE ©

WRITE(7,4%)
WRITE(7,50)
WRITE(8,45)
FORMAT (x AT

FORMAT (xTHE CONTENTS OF (RX,RY) ARE x)

DO 3500 IP=1
JO=REMI1+]P
NUM1=NUM(1
IRI={R(1,1
IR2=1R(2,]
DO 3400 1=

RX(IR1+1
RYCIR1+1
CONTI NUE
WRITE(7,55
FORMAT (xIP
WRITE(7,80
ENDFILE 7
CONTINUE
CONTINUE
CONTINUE

IL,MAXPOL

1L, MAXPOL

THE END OF ITERATION x,13,x MAXPOL= x,13)

, MAXPOL

,JO)

P)=NUM1 -NUMR
P)=NUM(2, JO)
1,1IR2

)= XWO(NUMI+1)
)=YWO(NUMLI+1)

) 1P
= %x,13)

) (RXCIRT+1) ,RY(IR1+1),1=1,1R2)

DETERMINE AREAS(LL)

CALL MESSAGC(?7

HREMAIN , 7HAREA)

COMPUTE AREA OF LARGEST POLYGON.

INUM(LL) =1

AREAS (LL)=AREA (XWO, YWO, NUM, REM1+1)

EP=.0001
IF(MAXPOL..EQ. 1

) GOTO S0S0

DO S000 1P=2,MAXPOL
AR=AREA (XWO, YWO, NUM, REM1+1P)
IF(AREAS(LL) .GE.AR-EP) GOTO 4900

AREAS(LL)=AR
INUM(LL)=1P
CONTINUE
CONT I NUE
CONT I NUE

CALL MESSAGA(7HREMAIN)

WRITE(7,65) LL

FORMAT (xREMAINDER SET x,13)

WRITE(7,70) LL,REM(1,LL),LL,REM(2,LL),MAXPOL
FORMAT(xREM(1,x,13,x)=x,13,x REM(2,x,13,x)=x,13,x MAXPOL=x,13)

DO 6000 IP=1,MAXPOL

JO=REM1+1P

NUMI1=NUM(1, JO)
NUM2=NUM(2, JO)

WRITE(7,7%)

WRITE(7,80)

ENDFILE 7
CONT I NUE

1P, JO,NUMI1, JO, NUM2

(XWO(NUMI+1), YWOINUMI+1),]1=1,NUM2)

80 FORMAT(5(G13.6,613.6))

RETURN
END

A-50

INDICES ARE x)

=l

ATV DRl

-
-

— e e -

Appendix B

PACKAGE IUCALC SOURCE CODE

Fra ot

0000000

e Xe Ko KX ke Ko Ko Ko DR K Ke X2 X Ko X K2 X2 N2 XN Ao Ne Xe e N NeNeNe N Ne NoRe N Ne N o N o]

(s XeNeNoeNeNeNe NeNoNoRel

SUBROUTINE 1UCALC(APX, APY, NOAP,BCX,BCY,NOBC,KALC,
& WORK, WRKMAX, NORC, INORC, | NOMAX, RCX, RCY, NRCMAX)

THIS ROUTINE (1) DETERMINES THE POLYGONS DEFINING THE UNION,
INTERSECTION, OR RELATIVE OIFFERENCE (1.E. THE INTERIOR OF ONE
THAT IS NOT INTERIOR TO THE OTHER) OF TWO GIVEN FOLYGONS, OR
(2) DETERMINES WHAT PORTIONS OF A CHAIN OF LINE SEGMENTS LIE ON
THE BOUNDARY, INTERIOGR, OR EXTERIOR TO A GIVEN POLYGON.

INTEGER NOAP,NOBC,KALC

REAL APX(NOAP) ,APY (NOAF) ,BCX(NOBC) , BCY (NOBC)
EXEXANRXXN XXX Xk kX USER SPECIFIED VARIABLES X% XX X X X % X X X X X X X X X X X X
APX A REALL ARRAY OF THE X COORDINATES OF A, THE FIRST POLYGON
APY A REAL ARRAY OF Y COORDINATES OF THE A POLYGON

NOAP AN INTEGER COUNT OF THE NUMBER OF POINTS DEFINING THE A POLYGON.

THE POLYGON CONSISTS OF LINE SEGMENTS FROM APX(1),APY(1) TO
APX(2),APY(2) TO ... TO APX(MOAP),APY(NOAP) TO APX(1),APY(1)

IF KALC 1S FOUR OR LESS:
BCX A REAL ARRAY OF THE X COORDINATES OF B, THE SECOMD POLYGON
BCY A REAL ARRAY OF Y COORDINATES OF THE B POLYGON
NOBC AN INTEGER CNUNT OF THE NUMBER OF POINTS DEFINING THE B POLYGON
KALC AN INTEGER SPECIFYING THE DESIRED TYPE OF OVERLAY
KALC=1 UNION OF A AND B
KALC=2 [INTERSECTION OF A AND B
KALC=3 RELATIVE DIFFEREMCE OF A TO B (A INTERSECT NOT B)
KALC=4 RELATIVE DIFFERENCE OF B TO A (B INTERSECT NOT A)

IF KALC IS GREATER THAN FOUR, BCX,BCY 1S AN OPEN CHAIN OF SEGMENTS
(RATHER THAN A CLOSED POLYGON) FROM BCX(1),BCY(1) TO BCX(2),BCY(2)
TO ... TO BCX(NOBC),BCY (NOBC)

KALC=5 SUBCHAINS OF B ON THE BOUNDARY OF A

KALC=6 SUBCI!AINS OF B EXTERIOR TO A

KALC=7 SUBCHAINS OF B INTERIOR TO A

KALC=8 SUBCHAINS OF B EXTERICR TO OR ON THE BNOUNDARY OF A

KALC=9 SUBCHAINS OF B INTERIOR TO OR CN THE BOUNDARY OF A

INTEGER WRKMAX , WORK (WRKMAX)
KEXXKKRXX XXXk Xk XXX XK KX WORK SPACE % % ¥ %% X % % % % KX 4 ROk X W KK XX

WORK |S A REAL*4 ARRAY OF LENGTH NOWORK. THE AMOUNT OF WORK SPACE
REQUIRED CANM BE ESTIMATED BY THE FORMULA NOAP+NOBC+6xK+2 WHERE K
IS THE MAXIMUM NUMBER OF I[INTERSECTIONS EXPECTED.

WRKMAX THE INTEGER LENGTH OF THE WORK ARRAY.

xxxxaxxanxxxxxxrxrkkx RESULT VARPIABIES ¥ x % X % X % % % % % % 3 % X % % K ¥ X
INTEGER NORC, INORC(2, NORC)

REAL RCX(1),RCY(1)
NORC AN INTEGER COUNT OF THE NUMBER OF CHAINS IN THE OVERLAY.
NORC=0 MEANS NO RESULT CHAINS HAVE BEEN CAILCULATED. EITH 1) NO

RESULT EXISTS OR 2) THE RESULT IS THE SAME AS THE ORIGINAL DATA.

NORC 1S ALSO AN ERROR INDICATOR FOR THE FOLLOWING TYPES OF ERRORS:

NORC=-1 THE TWO DATA CHAINS ARE NOT SIMPLY CONNECTED AT
A POINT OF INTERSECTION.
NORC< -10 WORK SPACE IS OF INSUFFICIENT SI2ZE.

INORC AN INTEGER MATRIX DIMENSIONED (2,NORC) WHERE NORC IS THE
NUMBER OF CHAINS [N THE RESULT. INGRC(1,1) IS THE OFFSET OF THE
INDEX FOR THE ITH CHAIN OF THE RESULT IN THE RCX,RCY ARRAYS.

B-3

.

i e e
SIS, TRGAEE - ¥ - S

T .7

T

iy

(e NeNeNoNeNeNoNoRoNoNe]

O000 00060

O000

INORC(2,1) 1S THE NUMBER OF POINTS IN THE ITH CHAIN OF THE
RESULT.

RCX A REAL ARRAY FOR THE X COORDINATES OF THE CHAIN(S) OF THE
RESULT. THE X COORDINATES OF THE [TH CHAIN ARE RCX(K+1),RCX(K+2),
RCX(K+3), ... ,RCX(K+L) WHERE K=INORC(1,1) AND L=INORC(2,1).

RCY A REAL ARRAY FOR THE Y COORDINATES OF THE RESULT CHAIN(S).

A DOUBLE PRECISION TO REAL FUNCTION, ROUND(X), 1S CALLED BY
THE SUBROUTINE 1UCALC

1 NORC=0
CALL 1USUB1T (APX, APY,NOAP,BCX,BCY ,NOBC,KALC,WORK(1),WORK (1), WRKMAX,
& NONXT, NORC)
IF(NORC .LT. O)RETURN
CALL 1USUB2(APX,APY, IABS(NOAP),BCX,BCY, 1ABS(NOBC) ,KALC,
& WORK(1),WORK(1),WRKMAX, NONXT, WORK (2XxNONXT+1),
& NORC, INORC, INOMAX, RCX, RCY, NRCMAX)

RETURN

END

SUBROUTINE 1USUBI1(X,Y,NAS,U,V,NBS,OTYPE, NXT, XYT, NWORK , NONXT, ERROR)
DIMENSION X(1),Y(1),UC1), V()

INTEGER OTYPE

XYT A REAL MATRIX DIMENSIONED BY (2,MAX1) FOR STORAGE OF THE X AND Y
COORDINATES OF THE INTERSECTION POINTS NOT OCCURING AT THE
DEFINING POINTS.

REAL XYT(2,1)

NXT AN INTEGER MATRIX DIMENSIONED BY (2,MAX3) WHERE MAX3 EQUALS
(NA+NB+TWICE THE NUMBER OF INTERSECTIONS NOT OCCURING AT THE
DEFINING POINTS) .

INTEGER NXT(2,1)
INTEGER ERROR

ERROR=-11 XT,¥T OVERRUN
ERROR=-12 SEG OVER-RUN
ERROR=-13 NXT OVER-RUN

LOGICAL ASENSF ,BSENSE,SENSE, INTER,BSTEMP

DOUBLE PREC!ISION ZERO, ONE

DOUBLE PRECISION AX,AY,BX,8Y,B2,0X,0DY,
$ AXB,AXD,BXD,D,Q,DMIN,DOTJM,DOTJNM, DOTJIN, DOTINN
DATA ZERO/0.DO/,ONE/1.DO/

DATA ASENSE/.TRUE./,BSENSE/.TRUE, /

NA=1ABS (NAS)

NB=1ABS(NBS)

NXYEND=NWORK /2+1

BSTEMP=BSENSE

IF(OTYPE .LE. 4 .AND. NAS .GT. O)ASENSE=SENSE(X,Y,NA)
IF(OTYPE .LE. 4 .AND. NBS .GT. O)BSENSE=SENSE(U,V,NB)
NBT=NB

IF(OTYPE .GT. 4)NBT=NB-1

IF(OTYPE .EQ. 3)BSENSE=.NOT.BSENSE

IF(OTYPE .EQ. 4)ASENSE=.NOT.ASENSE

IF(OTYPE .GT. 4)BSENSE=.TRUE.

NONXT=0

NXYT=0

DO S {=1,NA

IFC.NOT . ASENSE)INXT(2,1)=MOD(I+NA-2,NA)+1
IFCASENSE)INXT(2,1)=MOD(1,NA)+1

IF(X(1) .EQ. X(NXT(2,1)) .AND.

B-4

e

& Y(l) .EQ. Y(NXT(2,1)))6G0 TO 403

S NXT(1,1)=1
DO 10 1=1,NB
IF(BSENSE)INXT (2, 1 +NA)=MOD(1,NB) +NA+1

4 . IF(.NOT .BSENSE)INXT(2, 1+NA)=MOD(]+NB-2,NB)+NA+1
IF(UCL) .EQ. UINXT(2,1+NA)-NA) .AND.
> & V(1) .EQ. V(NXT(2,I+NA)-NA))GO TG 403 ‘

10 NXT(1,14+NA)=1+NA
BSENSE=BSTEMP
NONXT=NA+NB
J=1
XIN=X(1)

YJIN=Y (1)
DO 65 1=1,NBT
N=NXT(2, 1 +NA)
UoLD=U(1)
voLD=V(1)
NOLD=1+NA
c START OF LOGGP ON J
11 BX=U(N-NA)-USLD
BY=V(N-NA)-VOLD
B2=BXxx2+BY xx2
INTER= FALSE.
14 XJ=XJIN
YJ=YJIN
JN=NXT(2, J)
IF(JN .LE. NA)GO TO 20
JZ=-NXT(1, JN) -NA-NB
IF(JZ .LE. 0)GO TO 16
XJIN=XYT(1,NXYEND-J2Z)
YIN=XYT(2,NXYEND-J2)
GO TO 22 ;
16 JZ=JZ+NB &
XIN=U(J2Z) ,
YJIN=V(JZ) |
GO TO 22 I
20 XJIN=X{JN)
YIN=Y (JN) ;

. 22 DX=XJ-UOLD
DY=YJ-VOLD
AX=XJIN-XJ
AY=zYJIN-YJ
AXB=AXxBY -AY *BX
BXD=BXxDY -BY xDX
IF(AXB .EQ. ZERD)GG TG 30
Q=BXD/AXB
IF(Q .LE. ZERG .OR. Q .GT. ONEIGO TO 45
AXD=AX%DY -AY xDX

|
!

b
‘2
~
7]
A

D=AXD/AXB

IF(D LE. ZERO OR. D .GT. ONE)IGC TO 45
K=0

L=0

X1 =ROUND (UOL.D+D*BX)
Y1 =ROUND(VOL.D+DxBY)
IF(X1 .NE. UOLD .OR. YI .NE. VOLD)GO TO 24
K=NOLD
24 IF(X1 .NE. U(N-NA) .OR. YI .NE. V(N-NA))GO TO 26
K=N
26 XP=ROUND(XJ+QxAX)
YP=ROUND(YJ+QxAY)
IF(XP _NE. XJ .OR. YP .NE. YJ)GO YO 28

(2 Xe]

o000 O

o0 000D

L=J
28 IF(XP .NE. XJN .OR. YP .NE. YJN)GO TO 40
L=JN
GO TO 40
30 IF(BXD .NE. ZERO)GO TO 45
K=0
L=0
DOTJM=DX*xBX+DY xBY
DOTJINM= (XJIN-UOLD) xBX+(YJIN-VOLD) *xBY
DOTJN=(XJ-UCN-NAY) xBX+(YJ-V(N-NA))xBY
DOTJINN=(XIN-U(N-NA)) xBX+(YJIN-V(N-NA)) *xBY
1S J OUTSIDE M-N AND JUN OUTSIDE M-N AND
N OUTSIDE J-JN AND M OUTSIDE J-JN
IF(DOTJUNXDOTJM .GT. ZERO .AND. DOTJNM¥DOTJNN .GT. ZERO .AND.
$ DOTJNxDOTJNN .GT. ZERO .AND. DOTJMxDOTJNM .GT. ZERO)GO TO 45
IS N INSIDE J-JN AND M INSIDE J-JN)
IF(DOTJN*DOTJNN .LE. ZERO .AND. DOTJMxDOTJUNM .LE. ZERO)GO TO 36
IS J OUTSIDE M-N AND JN INSIDE M-N
OR J INSIDE M-N AND JN INSIDE M-N
AND JUN RATHER THAN J FURTHER FROM M
IF(DOTJM*DOTJN .GE. ZERO .AND. DOTJNMxDOTJNN .LE. ZERO .OR.
$ DOTJMsDOTJN .LE. ZERO .AND. DOTJNMxDOTJNN .LE. ZERO .AND.
$ DOTJNM .GT. DOTJMIGO TO 38
IF(DOTJM .EQ. ZEROIGO TO 45
D=DOTJM/B2
L=J
IF(DOTJN .EQ. ZERO)K=N
GO TO 40
36 D=ONE
K=N
IF(DOTJUN .EQ. ZERO)L=J
IF(DOTJUNN .EQ. ZERO)L=JN
GO TO 40
38 IF(DOTJNM .EQ. ZERO)GO TO 45
D=D2TJUNM/B2
L=JN
IF(DOTJUNN .EQ. ZERO)K=N
40 IF(INTER .AND. D .GT. DMIN)GO TO 45
TF(K _NE. O .AND. NXT(1,K) .LT. O .OR.
* L .NE. O .AND. NXT(1,L) .L.LT. 0'GO TO 45
DMIN=D
XMIN=X1
YMIN=Y1]
KMIN=K
LMIN=L
Ji=J
INTER= . TRUE.
45 J=NXT(2,J)
IF(J .NE 1)GO TO 14

END OF LOOP ON J

IFC.NOT. INTER)GO TO 65

LINK THE NEW POINT INTO THE U,V POLYGON
IF(KMIN .NE. 0)GO TO 54
NONXT=NONXT+1
IF(2xNONXT . LE. NWORK-2xNXYT)GO TO 46
ERROR=-13
GO TO 402

B-6

E
]
r

46 IF(LMIN .GT. 0)GO TO 52

NXYT=NXYT+1 13

IFINXYT .LE. (NWORK-2xNONXT)/2)G0 TO 47

ERROR=-11 ;
. GO TO 402

47 XYT(1,NXYEND-NXYT)=XMIN
XYT (2, NXYEND-NXYT)=YMIN
NXT(1,NONXT)=-NXYT-NA-NB
. UOLD=XMIN
VOLD=YMIN
GO TO 53
52 NXT(1,NINXT)=-LMIN

UBLD=X(LMIN) :
VOLD=Y (LMIN) 1
$3 NXT (2, NONXT)=NXT(2, NOLD) ,
NXT (2, NOLD) =NONXT Y
NOLD=NONXT
GO TO 55
S4 NXTC(1,KMIN)=-KMIN
IF(LMIN .BT. O)NXT(1,KMIN)=-LMIN
c
c LINK THE NEW POINT INTO THE X,Y POLYGON
55 IF(LMIN .GT. 0)GO T@ 59
NONXT=NONXT+1
IF(2xNONXT .LE. NWORK-2xNXYT)GO TO 56
ERROR=-13 §
GO TO 402 d
56 IF(KMIN .GT. 0)GO TO 57
NXT (1, NONXT) =NXT (1, NONXT-1)
GO TO 58
: 57 NXT(1,NONXT)=-KMIN
; 58 NXT(2,NONXT)=NXT(2,J1)
NXT(2,J1)=NONXT
GO TO 60
59 NXT(1,LMIN)=-NXT(1,LMIN) .
60 IF(KMIN .NE. NGO TO 11 u
65 CONTINUE !
c
[402 CONTINUE
RETURN
403 ERROR= -1
GO TO 402
END
SUBROUTINE [USUB2(X,Y,NA,U,V,NB,OTYPE,NXT, XYT, NWORK , 1
$ NONXT,SEG,NONIU,NIUS,NIUMAX, X1V, Y1U, NXYMAX)
DIMENSION X(NA),Y(NA),U(NB),6 V(NB) e vt e
INTEGER OTYPE
c
C SEG AN INTEGER MATRIX DIMENSIONED (3,MAX2) WHERE MAX2-2 EQUALS THE
c NUMBER OF INTERSECTIONS OF THE TWO F1GURES.
INTEGER NXT(2,1),SEG(3,1)
REAL XYT(2,1),XIUCT),YIUCT)
INTEGER NIUS(2,1)
INTEGER NIUMAX
LOGIiCAL IDENT
s LOGICAL PTS
' NSEG=0
NXYT=NONXT-NA-NB
IF(OTYPE .LE. 4)G0 TO 68
IFCNXTC1,NA+1) .GT. OINXT(1,NA+1)=-NXT(1,NA+1) :
IF(NXT(1,NA+NB) .GT. OINXT(),NA+NB)=-NXT(1,NA+NB) ¢
r,

B-7

ST S AT e S e YPTI o-.

)

GO TO 69 L;
68 CALL SEGDEF(U,V,NB,X,Y,NA,0,OTYPE, e
$ SEG,NSEG,NXT,NONXT,XYT, NWORK) ¥
IF(NSEG .LT. 0)GO TO 400 i
69 CALL SEGDEF(X,Y,NA,U,V,NB,NA,OTYPE,
$ SEG,NSEG,NXT,NONXT,XYT, NWORK)
IF(NSEG .LT. 0)GO TO 400

TDENT=. TRUE.]
DO 70 1=1,NSEG :,
IF(SEG(1,1) .NE. 4)IDENT=.FALSE. :
1Z2=SEG(2, 1)

FFONXTC(1,12) .LT. OINXT(1,12)=-NXT(1,12)
70 CONTINUE
1Z=SEG(3, NSEG)

|7
FEONXTC1,12) .LT. OINXT(1,12)=-NXT(1,12) b
c TAKE CARE OF UNION AND INTERSECTION OF IDENTICAL POLYGONS {
[AS A SPECIAL CASE
IF(.NOT.1DENT .OR. OTYPE .GT. 2)GO TO 80 .
NONIU=1

NIUS(2,NON1U) =NB

NIUS(1,NONIU) =0

DO 71 1=1,NB ;

Xtucl)=ucl) 'y
71 YIUCD) =v(1)

RETURN d
c
c LINK THE SEGMENTS AND GENERATE THE RESULT VARI!ABLES :
c
80 CONTINUE r
89 NIU=1 ,
NONIU=0 '3
C SEG(1,1) = 1 SEGMENT | OF A IS ON THE BOUNDARY OF B i
C SEG(1.,1) = 2 SEGMENT | OF A IS OUTSIDE B
C SEG(1,1) = 3 SEGMENT | OF A IS INSIDE B
C SEG(1.1) = 4 SEGMENT | OF B 1S ON THE BOUNDARY OF A
C SEG(1.]1) = S SEGMENT | OF B IS OUTSIDE A
C SEG(1,1) = 6 SEGMENT | OF B IS INSIDE A

| 90 DO 100 1=1,NSEG . i
; GO TO (91,92,93,94,95,96,97,98,99),0TYPE i
i 91 IF(SEG(1,1) .EQ. 2 .OR. SEG(1,1) .EQ. 5)G0 TO 110 !
| GO TO 100 4
- 92 IF(SEG(1,1) .EQ. 3 .OR. SEG(1,1) .EQ. 6)GO T6 110
, GO TO 100
Lo AN . 93 IF(SEG(1,1) .EQ. 2 .0R. SEG(1,1) .EG. 6)GO TO 110
i GO TG 100 ‘
94 IF(SEG(1,1) .EQ. 3 .OR. SEG(1,1) .EQ. 5)B0 TO 110 ;
GO TO 100
95 IF(SEG(1,1) .EQ. 4)GO TO 110
GO TO 100
96 IF(SEG(1,1) .EG. 5)GO TO 110
GO TO 100
97 IF(SEG(1,1) .EQ. 6)GO TO 110
GO TO 100
98 IF(SEG(1,1) .EQ. 4 .OR. SEG(1,1) .EQ. 5)GO TO 110
GO TO 100
99 IF(SEG(1,1) .EQ. 4 .0R. SEG(1,1) .EQ. 6)60 TO 110 i
100 CONTINUE
RETURN
110 IP=SEG(2,1) ‘
FH=NXTCT, IP) ;
NONIU=NONIU+1 J

B-8

e e —
L legade M3 1Y

DDA ')

f IF(NONIU .GT. NIUMAX)GO TO 400
: 111 PTS=.FALSE.
v NIUS(1,NONIU)=NI1U-1
‘ » NIUS(2,NONIU)=0
120 IF(IP .EQ. SEG(3,1) .AND. NXTC(1,IP) .EQ. [1 .AND. PTS)GO TO 310

NIUS(2,NONIU) =NIUS (2, NONIU) +1
P 121 IF(NIU .GT. NXYMAX)GO TG 400
|) CALL PNTGET(X,Y,NA,U,V,NB,XYT, NWORK, NXT(1, IP),
& XIU(NIU),YIU(NIUY)

NIU=NT U+

PTS=. TRUE.

IF(IP .EQ. SEG(3,1) .AND. SEG(2,1) .NE. SEG(3,1))60 TO 125
122 1P=NXT(2, IP) :

Go To 120 i
125 [F(OTYPE .GT. 4)GO T6 310 ’

DO 160 J=1,NSEG !
JP=SEG(2,J) i

W TN

IF(J .NE. I .AND. SEG{(1!,1l) .EQ. SEG(1,J) .AND.
$ NXTC(1,1P) .EQ. NXT(1,JP))GO TO 300
160 CONTINUE
DO 180 J=1,NSEG |.
JP=SEG(2, J) E
IF(NXTC1,1IP) .NE. NXT(1,JP))GO TO 180 !
GO TO (171,172,173,174),0TYPE l
171 IF(SEG(1,J) .EQ. 2 .OR. SEG(1,J) .EQ. $) GO TO 300

Go TG 180 ¥
172 IF(SEG(1,J) .EQ. 3 .OR. SEG(1,J) .EQ. 6)GO TO 300 “

Go To 180
173 IF(SEG(1,J) .EQ. 2 .6R. SEG(1,J) .EQ. 6)GO TO 300

GO TO 180 f
174 IF(SEG(1,J) .EQ. 3 .OR. SEG(1,J) .EQ. 5)GG TG 300

180 CONTINUE

DO 190 J=1,NSEG

JP=SEG(2,J)

IF(NXTC1,1P) .EQ. NXT(1,JP) .AND. SEG(1,J) .GT. 0)GE& TG 300
190 CONTINUE

NBNlU=-2 .
GO TO 402 1
300 SEG(1,1)=-SEG(1,1)
IP=SEG(2,J) '
1=J :
GO TO 122
310 SEG(1,1)=-SEG(1,1)
GO TO 90
400 NONIY=-12]
402 RETURN |
END

LOGICAL FUNCTION SENSE(X,Y,N)

SENSE [S TRUE IF THE X,Y POLYGON CLOSES CLOCKWISE, FALSE IF
IT CLOSES COUNTERCLOCKWISE

o000

INTEGER N

REAL X(N),Y(N)

DOUBLE PRECISION TSUM
IF(N .LT. 3)RETURN
TSUM=0.DO
AY=Y(2)-Y(1)
AX=X(2)-X(1)

DO 2 J=3,N
BY=Y(J)-Y())

OOO0O00O0000O0O0OOOOO0

S
)
S
S
S
S

40

42

43

BX=X(J)-X(1)

TSUM=TSUM+BY xAX -AY xBX

AX=BX

AY=BY

SENSE=.FALSE.

IF(TSUM .LT. 0.DO0)SENSE=.TRUE.

RETURN

END

SUBROUTINE SEGDEF (X,Y,NXY,U,V,NUV,OFFSET ,OTYPE,
$ SEG,NSEG, NXT,NONXT,XYT, NWORK)

SEGDEF GENERATES THE SEG MATRIX, A SEGMENT IS A SERIES OF
SUCCESSIVE SIDES OF ONE OF THE POLYGONS ALL LYING ALL INSIDE OR
ALL OUTSIDE THE OTHER POLYGON, OR A SIDE OF ONE POLYGON LYING ON
THE BOUNDARY OF THE OTHER. IF THE POLYGONS INTERSECT, THE END
POINTS OF THE SEGMENTS LIE OF THE BOUNDARY OF THE GQTHER POLYGON.
IF THE POLYGOMS DON'T INTERSECT OR ARE IDENTICAL, EACH POLYGON IS
A SINGLE SEGMENT. EACH TRIPLET OF THE SEG MATRIX DEFINES A
SEGMENT. THE FIRST NUMBER IN THE ITH TRIPLET CONTAINS A CODE:

EG(1,1) = 1 SEGMENT 1 OF A 1S ON THE BOUNDARY OF B
EG(1,1) = 2 SEGMENT | OF A IS OUTSIDE B
EG(1,1) = 3 SEGMENT 1| OF A 1S INSIDE B
EG(1,1) = 4 SEGMENT | OF B IS ON THE BOUNDARY OF A
EG(1,1) = S SEGMENT | OF B IS OUTSIDE A
EG(1,1) = 6 SEGMENT | OF B IS INSIDE A

SEG(2,1) IS THE INDEX IN THE NXT ARRAY OF THE FIRST POINT OF
SEGMENT 1. SEG(3,1) 1S THE INDEX IN THE NXT ARRAY OF THE LAST
POINT OF SEGMENT 1I.

INTEGER NXY,NUV,OFFSET,NSEG,NXYT,OTYPE
INTEGER ENSYD2

REAL XONXY), Y (NXY), U(NUV), VINUV)
INTEGER NXT(2,1),SEG(3,1)

REAL XYT(2,1)

LOGICAL SUMLNK

INTEGER SOLD

MAX2= (NWORK -2xNONXT)*x2/3

KK=2

IF(OFFSET .NE. O)KK=5

SUMLNK= FALSE.

JOLD=OFFSET+1

MSTART=10LD

NSTART=1

IF(OFFSET .EQ. OINSTART=NUVHI
[OF=-1

IF(NXT(1,10LD) .GT. 0)GO TO 40
SUMLNK=, TRUE.

SOLD=10OLD

MSTART=10LOD

LF(OTYPE .GT. 4)MSTART=NXY+NUV
INEW=NXT(2, 10LD)

IF(NXT(1, INEW) .LT. 0)GO TO 42
IF(.NOT.SUMLNK .OR. 10F ,GE. 0)GO TO 49
TOF=ENSYD2(DBLE(U(INEW-CFFSET)) ,DBLE(V(INEW-OFFSET)), X, Y, NXY)
GO TO 49

[F(SUMLNK)GO TO 43

MSTART=1NEW

SUMLNK=. TRUE.

SOLD=1NEW

GO TO 60

NSEG=NSEG+1

B-10

[oXoNeNeNel

IF(NSEG .GT. MAX2)GO TO S1
SEG(2, NSEG) =SOLD
SEG(3, NSEG) = NEW
SOLD=1NEW
IF(IOF .LT. 0)GO TO 4S5
SEG(1,NSEG)=KK+IOF
1OF=-1
GO TO 49
45 IF(OFFSET .EQ. 0)GO TO 46
CALL PNTGET(X,Y,NXY,U,V,6 NUV, XYT, K NWORK,
$ ~NXT(1,I0LD),XOLD,YOLD)
CALL PNTGET(X,Y,NXY,U,V,NUV,K XYT, NWORK,
$ -NXT(1,INEW),XNEW, YNEW)
GO TO 47
46 CALL PNTGET(U,V,NUV,X,Y,NXY, K XYT, NWORK,
$ -NXT(1,10LD),XOLD,YOLD)
CALL PNTGET(U,V,NUV,X,Y,NXY, K XYT, NWORK,
$ -NXT(1, INEW) , XNEW, YNEW)
47 1OFMID=ENSYD2((XOLD+XNEW) /2D0, (YOLD+YNEW)/2D0, X, Y, NXY)
473 IF(OTYPE .GT. 4)GO TO 484
ILS=NSTART
I=NXT(2,NSTART)
481 IF(NXT(1,1LS) .EQ. NXT(1,I0LD) .AND. NXT(1,1) .EQ. NXT(1, INEW)

& .OR. NXT(1,1) .EQ. NXT(1,10LD) .AND. NXT(1,1LS) .EQ. NXT(1,INEW))
& GO TO 482

ILS=1

I1=NXT(2,1)

IF(ILS .EQ. NSTART)GO TO 484
GO TO 481

482 |OFMID=-1

484 SEG(1,NSEG)=KK+I1GFMID

49 IF(MSTART .NE. INEW)GOG TO 60
IF{SUMLNK)RETURN
IOF=ENSYD2(DBLE(U(1)),DBLE(V(1}),X,Y, NXY)
NSEG=NSEG+1
IF(NSEG .LE. MAX2)G0 TO 52

51 NSEG=-12
GO 7O 53

52 SEG(1,NSEG)=KK+10F
SEG(2,NSEG) =0FFSET+1
SEG(3,NSEG)=SEG(2, NSEG)

53 RETURN

60 10LD=1NEW
GO TO 40
END
INTEGER FUNCTION ENSYD2(U,V,X,Y,N)

THE FUNCTION ENSYD2 IS 1 IF THE POINT (U,V) IS INTERIOR TO THE
X,Y POLYGON. ENSYD2 1S O OTHERWISE. THE POINT (U,V) |S ASSUMED
NOT ON THE BOUNDARY OF THE X,Y POLYGON.

INTEGER N

REAL X(N),Y(N)
DOUBLE PRECISION U,V
LOGICAL BOOL

ENSYD2=0
BOGL=.FALSE.
DO 10 1=1,N
IN=1+1

IFCIN .GT. N)IN=1
IFCY(IN) .EQ. Y(1) .AND. X(IN) .EQ. X(1))GO TO 10

B-11

. . « W e s e 04 - 8 0w -

Vi

IF(v .LE. Y(IN) .OR. V .GT. Y(1))GO TGO 5
TFCU-XCIDD)Ix(YCIN) =Y (1)) -(V-Y()Ix(X(IN)-X(1)) .LT. 0.DO)
$ BOOL=.NOT.BOOL
GO TO 10
5 IF(v .GT. Y(IN) .BR. V .LE. Y(1))GO TGO 10
IFCU-XCD))= (YCIN) =Y (1)) - (V=Y (1)) x(X(IN)-X(1)) .GT. 0.DO)
$ BOOL=.NOT.BOOL
10 CONTINUE
IF(BOOL)ENSYD2=1
RETURN
END
SUBROUTINE PNTGET(X,Y,NA,U,V,NB,XYT,NWORK,K,A,B)
REAL X(1),Y(1),U(1),V(1),XYT(2,1)
INTEGER K
IF(K .GT. NA+NB)GO TO 20
IF(K .GT. NA)GO TG 10
AzX(K)
B=Y (K)
GO 7O 30
10 A=U(K~-NA)
B=V(K-NA)
GO TO 30
20 A=XYT{1,NWORK/2+1-K+NA+NB)
B=XYT(2, NWORK/2+1-K+NA+NB)
30 RETURN
END
REAL FUNCTION ROUND(X1)
DOUBLE PRECISION A,Y, X, X1
REAL B(2),C(2)
EQUIVALENCE (B(1),Y),(A,C(1))
X=DABS(X1)
ROUND=0.0
IF(X.EQ.0.0D0) RETURN
Y=X
C(1)=B(1).AND.777700000000000000008B
C(2)=B(2).AND.77770000000000000000B
C(2)= C(2).0R.00004000000000000000B
ROUND=X+A
IF(X1.LT.0.D00) ROUND=-ROUMND
RETURN
END

DISTRIBUTION LIST

Name

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Center for Naval Analyses
2000 North Beauregard Street
Alexandria, VA 22311

Defense Advanced Research Projects Agency
Tactical Technology Office

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research
Code 431
Arlington, VA 22217

Dr. Thomas E. Fortmann

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, MA 02138

Orincon Corporation

3366 North Torrey Pines Court
Suite 322

La Jolla, CA 92037

DARPA Research Center
Unit 1, Building 301-A
Naval Air Station
Moffett Field, CA 94035

Naval Postgraduate School
Technical Library
Monterey, CA 93940

Naval Underwater Systems Center
New London Laboratory

Code 313

New London, CT 06320

Number of Copies

12

e 1‘1—'°—'-—~A——___.4J

Distribution List (Continued)

Name Number of Copies
Naval Underwater Systems Center o 1 -
Code 352 . .
Code 3502 1.
Newport, RI 02840 e
Dr. J. Anton 1 ;
Systems Control, Inc. h

1801 Page Mill Road
Palo Alto, CA 94304

W S

Office of Naval Research 1
Western Regional Office

1030 East Green Street

Pasadena, CA 91106

Naval Ocean Systems Center 1

Code 16

Code 724

Code 824

San Diego, CA 92152

Naval Surface Weapons Center 1 {
White Oak Laboratory :
Code U-20 ;1

Silver Spring, MD 20910

Dr. Yaakov Bar-Shalom 1

The University of Connecticut r

Department of Electrical Engineering
and Computer Science

Box U-157

Storrs, CT 06268 i

Mr. Conrad 1
Naval Intelligence Support Center

Code 20

Suitland, MD 20390

Naval Air Development Center 1
Warminster, PA 18974

=TT

Naval Electronics Systems Command 1 w
Washington, DC 20360
Code 320
Code 330

Code 350
PME-108

